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Cut distance topology

1) Compare the number of edges inside any vertex set:

d�(U,V ) = sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

U(x , y)− V (x , y)

∣∣∣∣ .
2) Minimise over permutations of the adjacency matrix:

δ�(U,V ) = inf
π
d�(U,V π) .

where π : [0, 1]→ [0, 1] runs over all measure preserving bijections
and Uπ(x , y) = U(π(x), π(y)).
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Weak* convergence

U1,U2, . . .
w∗−−→ V ⇐⇒ ∀S ,T ⊆ [0, 1] : lim

n→∞
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Weak* convergence: structuredness order

The relation � is a preorder.

U � V and V � U ⇐⇒
δ�(U,V ) = 0

Maximal elements are
zero-one graphons, minimal
are constant graphons.



Weak* convergence: compatible parameters

What functions Θ :W0 → R are compatible with the
structuredness order, i.e., U � V implies Θ(U) ≥ Θ(V )?

Suppose that Θ satisfies:

Θ is continuous in L1,

Θ(U) = Θ(Uπ) for measure preserving bijection π,
1
2Θ(U) + 1

2Θ(V ) ≥ Θ
(
U+V
2

)
.

Then it is compatible with structuredness order.

1) It suffices to show that the value of Θ does not increase after
averaging any graphon on any partition, i.e., Θ(UonP) ≤ Θ(U).
2) Approximate UonP by versions of U, i.e.,

UonP L1≈ 1
n (Uπ1 + · · ·+ Uπn) and use convexity.
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Weak* convergence: compatible parameters

Note that the parameter t(H, ·) is both continuous in L1 and
t(H,U) = t(H,V ) if δ�(U,V ) = 0.

t(H,U) =

∫
[0,1]|V (H)|

∏
ij∈E(H)

U(xi , xj)

A graph H is called weakly norming, if t(H, ·)1/|E(H)| is convex.

Theorem (Hatami’10)

Hypercubes, complete bipartite graphs, even cycles,. . . are weakly
norming, thus compatible. Nonbipartite graphs, nonstar trees,. . .
are not weakly norming.

A graph H is called Sidorenko, if t(H, ·) is minimised by constant
graphons.
Each weakly norming graph is compatible with structuredness
order and thus Sidorenko.
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Weak* convergence: compatible parameters

Theorem (Král’, Martins, Pach, Wrochna’18+)

There are edge-transitive graphs that are not compatible, thus not
weakly norming

Question (Král’, Martins, Pach, Wrochna’18+)

Is it true that every connected graph H is weakly norming if and
only if it is compatible with structuredness order?



Weak* convergence: compatible parameters

Idea of proof: for connected H compute its homomorphism density
in these two graphons.
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U+V
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We get t(H,U)1/|E(H)| + t(H,V )1/|E(H)| ≥ 1
4 t(H,U + V )1/|E(H)| .

Recover the constant loss via tensor power trick.
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