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k-means clustering
clustering: I have bunch of points, say 
in Rd, and want to cluster them so that 
close points are together. 
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Theory: expected O(log k) approximation guarantee

Outputs a set of centers that are subset of the input points (the 
centers then define clusters)
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First center: uniformly at random

Next k-1 centers: sample a point 
proportional to its current cost

Looks like alright heuristic, but why 
does it give O(log k) approximation?
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Sampling O(k) centers yields O(1) approximation 
to optimal solution on k centers. [Aggarwal, 
Deshpande, Kannan]

“balls into bins”:
A new center is sampled from given cluster 
proportional to the cost of the cluster. 

If current solution is ≥20 approximation of OPT, 
with ≥1/2 probability we sample a point from an 
unsettled cluster. 

Turns out that if we sample from any cluster, with 
1/10 probability we make it settled. 

=> Each step makes at least one unsettled cluster 
settled with constant probability. 

After O(k) steps, we are done whp :-)

cluster is settled = we pay ≤10 times more than 
what OPT pays for that cluster
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Lattanzi-Sohler: 

- sample k centers and yields O(1) approximation
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Algorithm of Lattanzi and Sohler (Local search ++) 

Run k-means++ (for k steps)

Then repeat the following:

- sample k+1th point as in k-means++
- go over your k+1 points and take out 

the one whose removal increases the 
cost the least

Theorem (LS): repeat O(k loglog k) times and 
you get O(1) approximation. 
Theorem (CGPR): actually, εk steps suffice 
for O(1/ε^3) approximation. 



Analysis: intuition
Theorem (“local search”, Kanungo et al): If we start with any set of k centers and 
try to “swap” any input points with any center in each step, we achieve O(1) 
approximation in polynomial time. 

Different intuition based bicriteria guarantees: just sampling without removals gets 
O(1) approximation. 
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Analysis: one step
LS: cost of solution decreases 
multiplicatively by 1-Θ(1/k) with constant 
probability

Hence, after O(k) steps the approximation 
decrease from log(k) to log(k)/2

after O(k) more steps from log(k)/2 to log(k)/4
… after O(k loglog(k)) steps we are down to 
constant

we cannot improve or can we?

LS: cost of solution decreases 
multiplicatively by 1-Θ(1/l) if the cost is 
“concentrated” just on l “unsettled” clusters



Outline
- Explain k-means++
- Explain its improved variant by Lattanzi and Sohler
- Tighter analysis of Lattanzi-Sohler’s algorithm
- Extension of their algorithm to a similar problem (if time allows)



Analysis: few bad clusters
Proposition (CGPR): Suppose the current clustering is ≥α-approximation of 
optimum. Then, O(k/∛α) clusters are not ∛α-settled. 



Analysis: few bad clusters
Proposition (CGPR): Suppose the current clustering is ≥α-approximation of 
optimum. Then, O(k/∛α) clusters are not ∛α-settled. 

cluster A is β-settled: we pay at most β times more for A then what optimum pays. 
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Proposition (CGPR): Suppose the current clustering is ≥α-approximation of 
optimum. Then, O(k/∛α) clusters are not ∛α-settled. 

cluster A is β-settled: in our set of centers C, there is c∈A and it “certifies” we pay 
at most β times more for A then what optimum pays. 



Analysis: O(k) steps
Proposition (CGPR): Suppose the current clustering is ≥α-approximation of 
optimum. Then, O(k/∛α) clusters are not ∛α-settled. 

Fact (LS): Improvement of one step is (1 - 1/l) = (1 - ∛α/k)

Corollary: Hence, after O(k/∛α) steps the approximation factor drops to α/2 and 
after O(k/∛(α/2)) steps drops to α/4 … after O(k) steps we have constant 
approximation. 



Analysis: technical part
Proposition (CGPR): Suppose the current clustering is ≥α-approximation of 
optimum. Then, O(k/∛α) clusters are not ∛α-settled. 

Fact: Suppose the current clustering is ≥α-approximation of optimum. Then, with 
probability 1-1/∛α we sample a new point from ∛α-unsettled cluster and make it 
∛α-settled

Corollary: after kmeans++, there are O(k/∛α) ∛α-unsettled clusters. 

Corollary: in each local search step, the number of ∛α-unsettled clusters increments 
by ≤1 with probability ≤1/∛α => after O(k) steps still only O(k/∛α) ∛α-unsettled 
clusters. 



Outline
- Explain k-means++
- Explain its improved variant by Lattanzi and Sohler
- Tighter analysis of Lattanzi-Sohler’s algorithm
- Extension of their algorithm to a similar problem (if time allows)



Extension to k-means with outliers
Select a subset of z “outliers” and output k centers that optimize the k-means cost 
on the remaining vertices. 

Bhaskara et al.: There is k-means based algorithm that gives O(log k) 
approximation, but only if it is allowed to output O(z * log k) many outliers. 

Lattanzi-Sohler: O(1) approximation with O(z) outliers. 

One more trick and more careful analysis (Grunau, R): O(1/ε) approximation with 
(1+ε)z outliers. 

Also can be extended to k-center with outliers. 



Summary
The trick of Lattanzi and Sohler enables you to turn bicriteria approximation in true 
approximation (for incremental sampling based algorithms). 

The analysis of Lattanzi-Sohler algorithm can be improved if you use that            
“in k-means++, most of the clusters are well approximated even if the cost is high”. 


