
Distributed Complexity of 
Lovász Local Lemma

Based on [Brandt,Maus,Uitto + Brandt,Grunau,R]



LOCAL model 

[Linial FOCS’87]

The LOCAL model of distributed graph algorithms
● Undirected graph on n nodes 

● One computer in each node

● Synchronous message passing rounds

● Unbounded message size and computation

● Initially, nodes know only (upper bound on) n and 

their unique O(log n) bit identifier

● In the end, each node should know its part of output

● Time complexity: number of rounds



LOCAL model 

[Linial FOCS’87]

The LOCAL model of distributed graph algorithms
● Undirected graph on n nodes of constant degree

● One computer in each node

● Synchronous message passing rounds

● Unbounded message size and computation

● Initially, nodes know only (upper bound on) n and 

their unique O(log n) bit identifier

● In the end, each node should know its part of output

● Time complexity: number of rounds



Sinkless orientation problem
Orient the edges of a graph so that 
every vertex has at least one outgoing 
edge. 

Think of Δ-regular graphs for large 
constant Δ. 

Vertices of degree less than Δ are not 
required to output anything



Sinkless orientation problem
How to approach this? 

Random orientation is not so bad: a 
vertex has probability only 2-Δ that it is 
not solved. 
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Sinkless orientation problem
How to approach this? 

Random orientation is not so bad: a 
vertex has probability only 2-Δ that it is 
not solved. 

Also, the bad events are independent 
for non-neighboring vertices. 

This setup is known as Lovász local 
lemma (in general, each random 
choice can affect more than two bad 
events).



Lovász local lemma
Every such problem can be solved in 
poly(log n) rounds deterministically and 
poly(log log n) rounds randomized, given p 
= 1/poly(Δ) [Fischer,Ghaffari; Ghaffari et al.; Ghaffari et al.]

On the other hand, Ω(log n) deterministic 
and Ω(log log n) randomized lower bound 
for sinkless orientation (remember that here 
p = 2-Δ). [Brandt et al.]

Today: for p < 2-Δ the det./rand. complexity 
is Θ(log* n).  [Brandt et al.; Brandt et al.]



Warmup: each variable affects 2 events
A sequential approach: iterate over edges 
and each time fix their randomness greedily. 
(To get a distributed algorithm, compute 
edge coloring in Θ(log* n) rounds first. )

Goal: each time we fix an edge, the 
probability of bad events on the two 
endpoints increases by at most a 2-factor. 



Warmup: each variable affects 2 events
A sequential approach: iterate over edges 
and each time fix their randomness greedily. 
(To get a distributed algorithm, compute 
edge coloring in Θ(log* n) rounds first. )

Goal: each time we fix an edge, the 
probability of bad events on the two 
endpoints increases by at most a 2-factor. 

Holds by Markov inequality. 



General case



General case
An algorithm that preserve two invariants:

- There are two nonnegative numbers on 
each edge summing up to ≤1,

- the probability of a bad event is smaller 
than the product of numbers next to the 
respective vertex. 
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General case
An algorithm that preserve two invariants:

- There are two nonnegative numbers on 
each edge summing up to ≤1,

- the probability of a bad event is smaller 
than the product of numbers next to the 
respective vertex. 

Goal: we can always derandomize so as to 
preserve this invariant. 

This is just an existential question!
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What needs to be proven (in case an event affects 3 variables)

Given a triangle labelled with 6 nonnegative 
numbers summing to ≤1 on each edge.  

Multiply numbers around each vertex; let us 
call each triple we can get this way 
representable. 

Prove that all nonrepresentable triples from 
[0,1]3 form a convex set. 
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How to prove a set is convex?
- differentiate everything (works for 

≤3 events, but not clear for higher 
dimensions)

- take two nonrepresentable triples, 
prove their convex combination is 
not representable

- take a representable triple at the 
boundary and find a supporting 
hyperplane, i.e. a plane containing 
just representable triples
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Finding supporting plane
Let’s start by finding a supporting line.
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Finding supporting plane
Let’s start by finding a supporting line. 

All triples on the line are representable!
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Finding supporting plane
Let’s start by finding a supporting line. 

All triples on the line are representable!

Even better, there are even three lines 
containing representable triples. 
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Finding supporting plane
Let’s start by finding a supporting line. 

All triples on the line are representable!

Even better, there are even three lines 
containing representable triples. 

If the starting triple lies on the boundary 
of the representable set, these three 
lines define a common plane H. 
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Finding supporting plane
Up to the orange term, we defined a 
representable plane. 

We actually have three possible coordinate 
systems for the plane H. 

One can prove that for each x∈H, one 
choice of basis yield positive orange term. 
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A nice fact
body = compact subset of Rn with nonempty interior

A body is convex if and only if one can find 
a supporting hyperplane at each boundary 
point. 

A connected body is convex if and only if 
one can find a locally supporting 
hyperplane at each boundary point.  
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