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k-means: definition

For a set X find a set of k centers C that minimizes X _,min__. d(x,c)’




k-means: theory versus practice
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k-means++

Practice: fast seeding for Lloyd’s algorithm

Theory: expected O(log k) approximation guarantee
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Distributed (e.g. MapReduce) variant of k-means++

First point sampled at random.

Next, sample k points in parallel proportional to cost.
° Next, sample k points in parallel proportional to cost.

° ° Continue for a while.

¢ ¢ There is a simple trick that compresses the number of
° centers back to k.

°® Question: how many steps are needed to get O(1)
approximation of the optimum cost?

°
° ° Answer [Bahmani et al., Bachem et al., Rozhon]:
O(log n) steps suffice



Balls into bins
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Throw k balls into k bins, each ball to a uniformly random bin.



Balls into bins
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Each bin is hit with probability 1 - (1 - 1/k)<= 1 - 1/e.

Hence, we expect to hit a constant fraction of bins.



k-means||: our analysis

One step of k-means|| is just a weighted
version of balls into bins.

Ball = Sampled center

Bin = Cluster

Weight here is the cost of each cluster.

As in classical balls into bins, we expect
the total weight to decrease by constant
factor in each step.

Hence, O(log n) steps suffice.

Final surprise: this approach can be used
to improve the number of rounds needed
to O(log n / loglog n).

We show this improved analysis to be
tight by extending a lower bound from
[Bachem et al.]
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