Local Problems on Trees from the Perspectives of Distributed Algorithms, Finitary Factors, and Descriptive Combinatorics

S. Brandt, Y. Chang, J. Grebík, C. Grunau, V. Rozhoň, Z. Vidnyászky

Summary

In computer science, we study *distributed algorithms* using **LOCAL** model of computing.

In *descriptive combinatorics*, mathematicians study certain "local" constructions.

There are some pretty cool connections between the two fields! [Bernshteyn]

The LOCAL model of distributed graph algorithms

- Undirected graph on *n* nodes, one computer in each node
- Synchronous message passing rounds, unbounded message size and computation
- Initially, nodes know only (upper bound on) *n*, in the end, each node should know its part of output
- Time complexity: number of rounds
- This talk: the graph is a Δ -regular tree with Δ constant

LOCAL model [Linial FOCS'87]

A lot is known! [Many papers in past 10 years]

Descriptive Combinatorics - Circle Squaring

Can you do this?

Descriptive Combinatorics - Circle Squaring

Can you do this?

...Yes! [Laczkovich, Grabowski et al., MarksUnger, Mathé et al., ...]

Main point of the paper:

we try to do the same as in complexity theory, i.e., define lots of complexity classes and prove some inclusions

Main point of the paper:

we try to do the same as in complexity theory, i.e., define lots of complexity classes and prove some inclusions

Also:

. . .

- introduce the ID graph trick,
- new LOCAL & BOREL lower bounds by generalization of Marks' technique

It seems there is a lot things waiting to be discovered!

Big thanks to Rotem, Mark, and other organizers!