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Presentation overview

| will;

e Introduce the (greedy) k-means++ algorithm
e Explain why is the greedy version harder to understand

L (if time allows) Briefly sketch some ideas of the analysis



(1)

Introducing (greedy) k-means++



The k-means problem

Commonly used formalization of clustering

For a set X S R° find a set of k centers C that minimizes 2 cymin d(x,c)?
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Hard to approximate within 1.07
factor [Addad, Srikanta], but
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factor [Vincent Cohen-Addad,
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... PTAS for fixed k [Kumar,
Sabharwal, Sen]

... PTAS for fixed d [Friggstad,
Rezapour, Salavatipour] [Addad,
Klein, Mathieu]
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k-means++

Practice: initial solution for Lloyd’s heuristic

Theory: O(log k) approximation guarantee [Arthur,
Vassilvitskii]
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First center: uniformly at random

Next k-1 centers: sample a point
proportional to its current cost
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K-means++
[Arthur, Vassilvitskii] k-means++ is ©(log k)-approximate.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Algorithm 4 k-means++ seeding

Input: X, £
: Uniformly sample x € X and set C; = {z}.
; fori<—1,2,...,k‘—1 do

Sample x € X with probability 5=

N =

mincGCi d(CC,C)z
rex Mincec, d(z,c)*

o

and set C; 11 = C; U {x}.

4: return C := C},



https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Greedy k-means++

Greedy Vs. Non-greedy
In each step, pick £ potential centers
Select the one that causes the biggest cost decrease
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Greedy k-means++
A different variant of k-means++ commonly used in e.g. the scikit-learn library.

[Arthur, Vassilvitskii] asked for its analysis.

Algorithm 5 Greedy k-means++ seeding

Input: X, k, ¢
1: Uniformly independently sample ci, ..., cﬁ € X;
2: Let ¢; = argmin 1 0y ) ooy d(, c)? and set Cy = {c1}.
3: fori+1,2,...,k—1do
4 g le ol (¢ X ind dentl i ‘th babilit min ¢ c; d(z,c)?
ample c;,q,...,Ci1q independently, sampling 2 with probability —= "t 5.

5: Let ¢;11 = arg MiNe o1 0 > zex Milgec,ufe} d(z, c)? and set Cj.1 = C; U {ciy1}.

(2

6: return C := ()},




Guarantees for this algorithm? (say {=2)

O(1) ? O(log k)

k-means++

none”?



Greedy k-means++

In the worst case, greedy is not better!

[Bhattacharya, Eube, Roglin, Schmidt]: Q(£ * log k)-approximate
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Guarantees for this algorithm? (say {=2)

O(1)? O(log k) 6(log® k)

k-means++ greedy k-means++

none”?



Our results:

O( £3 x log® k ) upper bound,
Q( £ x log® K /10g2 ¢xiog k) lower bound

In scikit-learn £ = O(log k), hence the algorithm is 6{log® k) approximate!



(2)
Why can’t we just recycle k-means++
analysis?
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The main k-means++
from [Arthur, Vassilvitski]

_emma

Lemma: Condition on sampling ¢ from some
optimal cluster K. Then,

E[ erKminc’E ) d(X’C,)Z ] =8 x erKd(X’H(K))2

(CUc

Proof sketch:
1. Prove it for uniform distribution.
2. Ingeneral,
a. orcurrent centers are far from K (reduces to 1)
b. atleast one center is close to K (done)




The main k-means++ Lemma
from [Arthur, Vassilvitski]

Lemma: Condition on sampling ¢ from some
optimal cluster K. Then,
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The main k-means++ Lemma
from [Arthur, Vassilvitski]

Lemma: Condition on sampling ¢ from some
optimal cluster K. Then,

°
o i ’ < 2
. BEE, Lymin. o dxe Y ] 6 x 2 dxu(K)
°
°
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] The rest of the analysis is about computing the probability of
g sampling from an already “covered” cluster.




The problem with sampling £ >1 points

Algorithm 5 Greedy k-means++ seeding

Input: X, k, ¢
1: Uniformly independently sample o ,cﬁ e X;
2: Let ¢ _a:gmm—e_{cp =TT S (T, c)” and set C1 = {c1}.
3: fori<+ 1,2,....,k—1do adversarlally
1 ) : . o min.cc; d(z,c)?
4 Sample ¢;_ ,...,c; 1 € X independently, sampling = with probability S i, AT

=

Let ¢iy1 = arg il et St T, 0 ) and set Gy = C; U {cit1}.

adversariall
6: return C := ()}, y

The adversarial version is only Q(k'') approximate!
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But what about greedy?

o Algorithm 5 Greedy k-means++ seeding
Input: X, k, ¢
1: Uniformly independently sample ci, . ,cf €X;
o 2 Let ¢ = argminge(1 1y S pex d(z.c)? and set Cy = {c1}.

3 fori«1,2,...,k—1do

. . 4 Sample ¢! £ X ind dentl line = with probability mingec, dw,c)?
o : ple ¢ q, .-, ¢;11 € X independently, sampling = with probability mm

o s Let ey =argmingga oy D eex Mingec,uge) A )? and set Cipy = C; U {cipr )

6: return C := C},




But what about greedy?

This lower bound does not really work

° o
o anymore because greedy really really
wants to take the center from the middle
cluster.
o
o
° o °
.. o .. Y
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But what about greedy?

Lemma: For every cluster in OPT, the
expected number of points sampled from
this cluster until covered is O(£? log? k).

Corollary: The approximation ratio of greedy k-means++ is

O(log k) O(f) O(£2 log? k) = O( log® k).

(Almost) Matching Lower bound: Combining

1. the k-means++ lower bound,
2. aversion of the Q(k™"*) lower bound.



(3)

Where is O(f? log® k) coming from?

(very fast if at all)



Why there are only log?(k) samples from the same cluster? (£ =2)

WLOG, we always have:

° cost(X \ K)/k = cost(K) < cost(X \ K)*k

- also WLOG, the cost drop by taking

?viit%ollgéz (())ff)g;e\nzgelif/) . .. Y\ K points .in X\Kis gt least cost(K).
o o - Thus, in expectation we sample 1
Qe %, point from K during cost(X \ K)
o © ... : dropping by 2 factor
The closest center to K o - Hence, we sample only log(k) points
° from K!
K °
°
°




Why there are only log?(k) samples from the same cluster? (£ =2)
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Why there are only log?(k) samples from the same cluster? (£ =2)

® X\K
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goes out!



Summary

e greedy k-means++ is still “well-behaved”.

e Butl view it as a small miracle — for such a simple algorithm, its analysis is
surprisingly subtle.

e Atheoretical justification for the greedy rule?

Algorithm 5 Greedy k-means++ seeding

Input: X, &, ¢
1: Uniformly independently sample c%, e c‘{ € X;
2: Let ¢ = argmin g1 oy > wex d(z,c)? and set C1 = {c1}.
3: fori<«1,2,...,k—1do
. Sample ¢/ £ | € X independent] I ith probability < mnesC; 4"
4: ample c;yq,...,C 41 independently, sampling = with probability ~—= 5~ 2.

S

Let ¢;1 1 = arg mince{c}’__.,cf} > wex MiNgeo,uqe d(, d)? and set C;41 = C; U {ciy1}-

6: return C := C},




