A Nearly Tight Analysis of Greedy k-means++

Christoph Grunau, Ahmet Alper Özüdogru, Václav Rozhoň, Jakub Tětek

Presentation overview

I will:

- Introduce the (greedy) k-means++ algorithm
- Explain why is the greedy version harder to understand
- (if time allows) Briefly sketch some ideas of the analysis

(1) Introducing (greedy) k-means++

Commonly used formalization of clustering

For a set $X \subseteq \mathbb{R}^d$ find a set of k centers C that minimizes $\sum_{x \in X} \min_{c \in C} d(x,c)^2$

Commonly used formalization of clustering

For a set $X \subseteq \mathbb{R}^d$ find a set of k centers C that minimizes $\sum_{x \in X} \min_{c \in C} d(x,c)^2$

Commonly used formalization of clustering

For a set $X \subseteq \mathbb{R}^d$ find a set of k centers C that minimizes $\sum_{x \in X} \min_{c \in C} d(x,c)^2$

Commonly used formalization of clustering

Hard to approximate within 1.07 factor [Addad, Srikanta], but ... can be approximated within 5.92 factor [Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, Shyam Narayanan ... PTAS for fixed k [Kumar, Sabharwal, Sen] ... PTAS for fixed d [Friggstad, Rezapour, Salavatipour] [Addad, Klein, Mathieu]

practice

theory

Hard to approximate within 1.07 factor [Addad, Srikanta], but ... can be approximated within 5.92 factor [Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, Shyam Narayanan ... PTAS for fixed k [Kumar, Sabharwal, Sen] ... PTAS for fixed d [Friggstad, Rezapour, Salavatipour] [Addad, Klein, Mathieu]

Lloyd's heuristic [Lloyd]

practice

theory

Hard to approximate within 1.07 factor [Addad, Srikanta], but ... can be approximated within 5.92 factor [Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, Shyam Narayanan ... PTAS for fixed k [Kumar, Sabharwal, Sen] ... PTAS for fixed d [Friggstad, Rezapour, Salavatipour] [Addad, Klein, Mathieu]

k-means++ [Arthur, Vassilvitskii]

Lloyd's heuristic [Lloyd]

theory

Practice: initial solution for Lloyd's heuristic

Theory: O(log k) approximation guarantee [Arthur, Vassilvitskii]

First center: uniformly at random

First center: uniformly at random

First center: uniformly at random

$$P(x \text{ sampled}) = d(x, c)^2 / \sum_{x' \in X} d(x', c)^2$$

First center: uniformly at random

First center: uniformly at random

First center: uniformly at random

First center: uniformly at random

First center: uniformly at random

[Arthur, Vassilvitskii] k-means++ is Θ(log k)-approximate.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Algorithm 4 k-means++ seeding

Input: X, k

- 1: Uniformly sample $x \in X$ and set $C_1 = \{x\}$.
- 2: for $i \leftarrow 1, 2, ..., k 1$ do

3: Sample $x \in X$ with probability $\frac{\min_{c \in C_i} d(x,c)^2}{\sum_{x \in X} \min_{c \in C_i} d(x,c)^2}$ and set $C_{i+1} = C_i \cup \{x\}$.

4: return $C := C_k$

Greedy Vs. Non-greedy

Greedy Vs. Non-greedy

Greedy Vs. Non-greedy

Greedy Vs. Non-greedy

A different variant of k-means++ commonly used in e.g. the scikit-learn library.

[Arthur, Vassilvitskii] asked for its analysis.

Algorithm 5 Greedy k-means++ seeding

Input: X, k, ℓ

- 1: Uniformly independently sample $c_1^1, \ldots, c_1^\ell \in X$;
- 2: Let $c_1 = \arg\min_{c \in \{c_1^1, \dots, c_1^\ell\}} \sum_{x \in X} d(x, c)^2$ and set $C_1 = \{c_1\}$.

3: for
$$i \leftarrow 1, 2, ..., k - 1$$
 do

- 4: Sample $c_{i+1}^1, \ldots, c_{i+1}^\ell \in X$ independently, sampling x with probability $\frac{\min_{c \in C_i} d(x,c)^2}{\sum_{x \in X} \min_{c \in C_i} d(x,c)^2}$.
- 5: Let $c_{i+1} = \arg\min_{c \in \{c_i^1, \dots, c_i^\ell\}} \sum_{x \in X} \min_{c' \in C_i \cup \{c\}} d(x, c')^2$ and set $C_{i+1} = C_i \cup \{c_{i+1}\}$.
- 6: return $C := C_k$

Guarantees for this algorithm? (say l=2)

In the worst case, greedy is not better!

[Bhattacharya, Eube, Röglin, Schmidt]: $\Omega(\ell * \log k)$ -approximate

Guarantees for this algorithm? (say *l*=2)

O(1)?

Θ(log k) k-means++

none?

Guarantees for this algorithm? (say *l*=2)

O(1)?

Θ(log k) _{k-means++} $\Theta(\log^3 k)$ greedy k-means++

none?

Our results:

- O($l^3 \times \log^3 k$) upper bound,
- $\Omega(\ell^3 \times \log^3 k / \log^2 (\ell \times \log k)) \text{ lower bound}$

In scikit-learn $\ell = \Theta(\log k)$, hence the algorithm is $\Theta(\log^6 k)$ approximate!

(2) Why can't we just recycle k-means++ analysis?

The main k-means++ Lemma from [Arthur, Vassilvitski]

The main k-means++ Lemma

from [Arthur, Vassilvitski]

Lemma: Condition on sampling c from some optimal cluster K. Then, $\mathbb{E}\left[\Sigma_{x \in K} \min_{c' \in (C \cup c)} d(x,c')^2 \right] \leq 8 \times \Sigma_{x \in K} d(x,\mu(K))^2$

The main k-means++ Lemma

from [Arthur, Vassilvitski]

Lemma: Condition on sampling c from some optimal cluster K. Then, $\mathbb{E}\left[\Sigma_{x \in K} \min_{c' \in (C \cup c)} d(x,c')^2 \right] \leq 8 \times \Sigma_{x \in K} d(x,\mu(K))^2$

from [Arthur, Vassilvitski]

Lemma: Condition on sampling c from some optimal cluster K. Then, $E\left[\sum_{x \in K} \min_{c' \in (C \cup c)} d(x,c')^2\right] \leq 8 \times \sum_{x \in K} d(x,\mu(K))^2$

With the new center, its cost gets at most 8 times worse than the optimal cost, in expectation.

from [Arthur, Vassilvitski]

Lemma: Condition on sampling c from some optimal cluster K. Then, $E\left[\sum_{x \in K} \min_{c' \in (C \cup c)} d(x,c')^2 \right] \le 8 \times \sum_{x \in K} d(x,\mu(K))^2$

Proof sketch:

- . Prove it for uniform distribution.
- 2. In general,
 - a. or current centers are far from K (reduces to 1)
 - b. at least one center is close to K (done)

from [Arthur, Vassilvitski]

Lemma: Condition on sampling c from some optimal cluster K. Then, $\sum \sum_{x \in K} \min_{c' \in (C \cup c)} d(x,c')^{2} \leq 8 \times \sum_{x \in K} d(x,\mu(K))^{2}$

from [Arthur, Vassilvitski]

Lemma: Condition on sampling c from some optimal cluster K. Then, $\sum \sum_{x \in K} \min_{c' \in (C \cup c)} d(x,c')^{2} \leq 8 \times \sum_{x \in K} d(x,\mu(K))^{2}$

The rest of the analysis is about computing the probability of sampling from an already "covered" cluster.

The problem with sampling $\ell > 1$ points

The adversarial version is only $\Omega(k^{1-1/\ell})$ approximate!

•••

•••

Lemma: Condition on sampling c from some optimal cluster K. Then,

 $\mathbb{E}\left[\Sigma_{x \in \mathsf{K}} \min_{\mathsf{c}' \in (\mathsf{C} \cup \mathsf{c})} \mathsf{d}(\mathsf{x},\mathsf{c}')^2 \right] \le 8 \times \Sigma_{x \in \mathsf{K}} \mathsf{d}(\mathsf{x},\mu(\mathsf{K}))^2$

••

•

Lemma: Condition on sampling c from some optimal cluster K. Then, $\mathbb{E}\left[\sum_{x \in K} \min_{c' \in (C \cup c)} d(x,c')^2 \right] \leq 8 \times \sum_{x \in K} d(x,\mu(K))^2$

•

This lower bound does not really work anymore because greedy really really wants to take the center from the middle cluster.

Algorithm 5 Greedy k-means++ seeding Input: X, k, ℓ 1: Uniformly independently sample $c_1^1, \ldots, c_1^\ell \in X$; 2: Let $c_1 = \arg\min_{c \in [c_1^1, \ldots, c_1^\ell]} \sum_{x \in X} d(x, c)^2$ and set $C_1 = \{c_1\}$. 3: for $i \leftarrow 1, 2, \ldots, k - 1$ do 4: Sample $c_{i+1}^1, \ldots, c_{i+1}^\ell \in X$ independently, sampling x with probability $\frac{\min_{c \in C_i} d(x,c)^2}{\sum_{x \in X} \min_{c \in C_i} d(x,c)^2}$. 5: Let $c_{i+1} = \arg\min_{c \in \{c_1^1, \ldots, c_i^\ell\}} \sum_{x \in X} \min_{c' \in C_i \cup \{c\}} d(x, c')^2$ and set $C_{i+1} = C_i \cup \{c_{i+1}\}$. 6: return $C := C_k$

Main technical lemma for greedy k-means++ **Lemma**: For every cluster in OPT, the expected number of points sampled from this cluster until covered is $O(l^2 \log^2 k)$.

Lemma: For every cluster in OPT, the expected number of points sampled from this cluster until covered is $O(l^2 \log^2 k)$.

Corollary: The approximation ratio of greedy k-means++ is

 $O(\log k) O(\ell) O(\ell^2 \log^2 k) = O(\ell^3 \log^3 k).$

Lemma: For every cluster in OPT, the expected number of points sampled from this cluster until covered is $O(l^2 \log^2 k)$.

Corollary: The approximation ratio of greedy k-means++ is

```
O(\log k) O(l) O(l^2 \log^2 k) = O(l^3 \log^3 k).
original k-means++
analysis
```

Lemma: For every cluster in OPT, the expected number of points sampled from this cluster until covered is $O(l^2 \log^2 k)$.

Corollary: The approximation ratio of greedy k-means++ is

```
O(\log k) O(l) O(l^2 \log^2 k) = O(l^3 \log^3 k).
original k-means++
analysis
sampling from a
"covered" cluster is l
times more probable
```

Lemma: For every cluster in OPT, the expected number of points sampled from this cluster until covered is $O(l^2 \log^2 k)$.

Corollary: The approximation ratio of greedy k-means++ is

Lemma: For every cluster in OPT, the expected number of points sampled from this cluster until covered is $O(\ell^2 \log^2 k)$.

Corollary: The approximation ratio of greedy k-means++ is

 $O(\log k) O(l) O(l^2 \log^2 k) = O(l^3 \log^3 k).$

(Almost) Matching Lower bound: Combining

- 1. the k-means++ lower bound,
- 2. a version of the $\Omega(k^{1-1/\ell})$ lower bound.

(3) Where is $O(\ell^2 \log^2 k)$ coming from?

(very fast if at all)

Why there are only $log^{2}(k)$ samples from the same cluster? (l = 2)

WLOG, we always have:

 $cost(X \setminus K)/k \le cost(K) \le cost(X \setminus K)^*k$

- also WLOG, the cost drop by taking points in X \ K is at least cost(K).
- Thus, in expectation we sample 1 point from K during cost(X \ K) dropping by 2 factor
- Hence, we sample only log(k) points from K!

Why there are only $log^{2}(k)$ samples from the same cluster? (l = 2)

Why there are only $log^{2}(k)$ samples from the same cluster? (l = 2)

Summary

- greedy k-means++ is still "well-behaved".
- But I view it as a small miracle for such a simple algorithm, its analysis is surprisingly subtle.
- A theoretical justification for the greedy rule?

Algorithm 5 Greedy k-means++ seeding

Input: X, k, ℓ

- 1: Uniformly independently sample $c_1^1, \ldots, c_1^\ell \in X;$
- 2: Let $c_1 = \arg\min_{c \in \{c_1^1, \dots, c_1^\ell\}} \sum_{x \in X} d(x, c)^2$ and set $C_1 = \{c_1\}$. 3: for $i \leftarrow 1, 2, \dots, k-1$ do

4: Sample $c_{i+1}^1, \ldots, c_{i+1}^\ell \in X$ independently, sampling x with probability $\frac{\min_{c \in C_i} d(x,c)^2}{\sum_{x \in X} \min_{c \in C_i} d(x,c)^2}$. 5: Let $c_{i+1} = \arg\min_{c \in \{c_i^1, \ldots, c_i^\ell\}} \sum_{x \in X} \min_{c' \in C_i \cup \{c\}} d(x,c')^2$ and set $C_{i+1} = C_i \cup \{c_{i+1}\}$.

6: return $C := C_k$