A Nearly Tight Analysis of
Greedy k-means++

Christoph Grunau, Ahmet Alper Ozidogru, Vaclav Rozhor, Jakub Tétek

Presentation overview

| will;

e Introduce the (greedy) k-means++ algorithm
e Explain why is the greedy version harder to understand

L (if time allows) Briefly sketch some ideas of the analysis

(1)

Introducing (greedy) k-means++

The k-means problem

Commonly used formalization of clustering

For a set X S R° find a set of k centers C that minimizes 2 cymin d(x,c)?

ceC

The k-means problem

Commonly used formalization of clustering

For a set X S R° find a set of k centers C that minimizes 2 cymin d(x,c)?

ceC

o0
°
o.'.o
¢ ° “
o..O *
°
°
o°.o
° o .o
o9 °

The k-means problem

Commonly used formalization of clustering

For a set X S [find a set of k centers C that minimizes 2 cymin d(x,c)?

ceC

The k-means problem

Commonly used formalization of clustering
For a set X < [=° find a set of k centers C that minimizes % _ min___ d(x,c)’

k-means: theory versus practice

practice

k-means: theory versus practice

Hard to approximate within 1.07
factor [Addad, Srikanta], but

... can be approximated within 5.92
factor [Vincent Cohen-Addad,
Hossein Esfandiari, Vahab Mirrokni,
Shyam Narayanan

... PTAS for fixed k [Kumar,
Sabharwal, Sen]

... PTAS for fixed d [Friggstad,
Rezapour, Salavatipour] [Addad,
Klein, Mathieu]

practice

k-means: theory versus practice

Hard to approximate within 1.07
factor [Addad, Srikanta], but

... can be approximated within 5.92
factor [Vincent Cohen-Addad,
Hossein Esfandiari, Vahab Mirrokni,
Shyam Narayanan

... PTAS for fixed k [Kumar,
Sabharwal, Sen]

... PTAS for fixed d [Friggstad,
Rezapour, Salavatipour] [Addad,
Klein, Mathieu]

practice

k-means: theory versus practice

Hard to approximate within 1.07
factor [Addad, Srikanta], but

... can be approximated within 5.92
factor [Vincent Cohen-Addad,
Hossein Esfandiari, Vahab Mirrokni,
Shyam Narayanan

... PTAS for fixed k [Kumar,
Sabharwal, Sen]

... PTAS for fixed d [Friggstad,
Rezapour, Salavatipour] [Addad,
Klein, Mathieu]

[Arthur,
Vassilvitskii]

practice

k-means++

Practice: initial solution for Lloyd’s heuristic

Theory: O(log k) approximation guarantee [Arthur,
Vassilvitskii]

k-means++

First center: uniformly at random

k-means++

First center: uniformly at random

o Next k-1 centers: sample a point
proportional to its current cost

k-means++

First center: uniformly at random

® :
X o Next k-1 centers: sample a point
proportional to its current cost, i.e.,
°
. 1)
. o *e P(x sampled) = d(x, c)*/ Z , 2, d(X’, c)?
°
() °
() °
Y [
°
°
°
o ® o
° ® o
o ()

k-means++

First center: uniformly at random

o Next k-1 centers: sample a point
proportional to its current cost

k-means++

First center: uniformly at random

° :
o Next k-1 centers: sample a point
¢ proportional to its current cost
°
°
°
o % o
° ¢ .o
— i 2 ; ’ 2
. ° . ® P(xsampled) = min__.d(x, ¢}/ Z , _, min__.d (x’ c)
o
°
°
o %o
° ® o
® °

k-means++

First center: uniformly at random

o Next k-1 centers: sample a point
proportional to its current cost

k-means++

First center: uniformly at random

o Next k-1 centers: sample a point
proportional to its current cost

k-means++

First center: uniformly at random

o Next k-1 centers: sample a point
proportional to its current cost

k-means++

First center: uniformly at random

Next k-1 centers: sample a point
proportional to its current cost

()
o

K-means++
[Arthur, Vassilvitskii] k-means++ is ©(log k)-approximate.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Algorithm 4 k-means++ seeding

Input: X, £
: Uniformly sample x € X and set C; = {z}.
; fori<—1,2,...,k‘—1 do

Sample x € X with probability 5=

N =

mincGCi d(CC,C)z
rex Mincec, d(z,c)*

o

and set C; 11 = C; U {x}.

4: return C := C},

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Greedy k-means++

Greedy Vs. Non-greedy
In each step, pick £ potential centers
Select the one that causes the biggest cost decrease

Greedy k-means++

Greedy Vs. Non-greedy
In each step, pick £ potential centers
Select the one that causes the biggest cost decrease

Greedy k-means++

Greedy Vs. Non-greedy
In each step, pick £ potential centers
Select the one that causes the biggest cost decrease

®
[
° —
., §=2
(] [
o ° %
° °
) (]
°
° °« bigger cost decrease
° °
° . ® o
{ o Y

Greedy k-means++

Greedy Vs. Non-greedy
In each step, pick £ potential centers
Select the one that causes the biggest cost decrease

®
[
°
° . =2
(] o [
o ° %
° °
) (]
°
0_ bigger cost decrease
° °
° . ® o
{ o Y

Greedy k-means++
A different variant of k-means++ commonly used in e.g. the scikit-learn library.

[Arthur, Vassilvitskii] asked for its analysis.

Algorithm 5 Greedy k-means++ seeding

Input: X, k, ¢
1: Uniformly independently sample ci, ..., cﬁ € X;
2: Let ¢; = argmin 1 0y) ooy d(, c)? and set Cy = {c1}.
3: fori+1,2,...,k—1do
4 g le ol (¢ X ind dentl i ‘th babilit min ¢ c; d(z,c)?
ample c;,q,...,Ci1q independently, sampling 2 with probability —= "t 5.

5: Let ¢;11 = arg MiNe o1 0 > zex Milgec,ufe} d(z, c)? and set Cj.1 = C; U {ciy1}.

(2

6: return C := ()},

Guarantees for this algorithm? (say {=2)

O(1) ? O(log k)

k-means++

none”?

Greedy k-means++

In the worst case, greedy is not better!

[Bhattacharya, Eube, Roglin, Schmidt]: Q(£ * log k)-approximate

Guarantees for this algorithm? (say {=2)

O(1) ? O(log k)

k-means++

none”?

Guarantees for this algorithm? (say {=2)

O(1)? O(log k) 6(log® k)

k-means++ greedy k-means++

none”?

Our results:

O(£3 x log® k) upper bound,
Q(£ x log® K /10g2 ¢xiog k) lower bound

In scikit-learn £ = O(log k), hence the algorithm is 6{log® k) approximate!

(2)
Why can’t we just recycle k-means++
analysis?

The main k-means++ Lemma
from [Arthur, Vassilvitski]

The main k-means++ Lemma
from [Arthur, Vassilvitski]

Lemma: Condition on sampling ¢ from some
optimal cluster K. Then,

° E[= _.min d(x,c?] <8xZ _ d(x,u(K)y

cEe(CUc)

The main k-means++ Lemma

from [Arthur, Vassilvitski]
Lemma: Condition on sampling ¢ from some
optimal cluster K. Then,

o E[£, _. min d(x,c)? | <8 x5 _ d(x,u(K)y

cEe(CUc)

The main k-means++ Lemma
from [Arthur, Vassilvitski]

Lemma: Condition on sampling ¢ from some
optimal cluster K. Then,

°
o : "\ 2 2
R E[erKmlnC,E(CUC) d(x,c’)] <8 x 2 _.d(x,u(K))
°
°
°
o % o
° ¢ .o
° °
°
° K
° . T~ With the new center, its cost gets at most 8 times worse
° than the optimal cost, in expectation.

The main k-means++
from [Arthur, Vassilvitski]

_emma

Lemma: Condition on sampling ¢ from some
optimal cluster K. Then,

E[erKminc’E) d(X’C,)Z] =8 x erKd(X’H(K))2

(CUc

Proof sketch:
1. Prove it for uniform distribution.
2. Ingeneral,
a. orcurrent centers are far from K (reduces to 1)
b. atleast one center is close to K (done)

The main k-means++ Lemma
from [Arthur, Vassilvitski]

Lemma: Condition on sampling ¢ from some
optimal cluster K. Then,

: ’ E'{/erxminc’e(cuq d(x,c’)7] ;éx % < d(x,u(K))?

The main k-means++ Lemma
from [Arthur, Vassilvitski]

Lemma: Condition on sampling ¢ from some
optimal cluster K. Then,

°
o i ’ < 2
. BEE, Lymin. o dxe Y] 6 x 2 dxu(K)
°
°
°
o % o
° ¢ .o
° °
] The rest of the analysis is about computing the probability of
g sampling from an already “covered” cluster.

The problem with sampling £ >1 points

Algorithm 5 Greedy k-means++ seeding

Input: X, k, ¢
1: Uniformly independently sample o ,cﬁ e X;
2: Let ¢ _a:gmm—e_{cp =TT S (T, c)” and set C1 = {c1}.
3: fori<+ 1,2,....,k—1do adversarlally
1) : . o min.cc; d(z,c)?
4 Sample ¢;_ ,...,c; 1 € X independently, sampling = with probability S i, AT

=

Let ¢iy1 = arg il et St T, 0) and set Gy = C; U {cit1}.

adversariall
6: return C := ()}, y

The adversarial version is only Q(k'') approximate!

Q(k™ "y approximation for adversarial algorithm

o Algorithm 5 Greedy k-means++ seeding

Input: X, k, ¢
1: Uniformly independently sample ci, vss ,cf €X;

o 2 Let ¢ =g mp——rex (.) and set C) = {a}.
3 fori«1,2,...,k—1do adversarially
; ; : - ineec, d(w,e)?
()) o 4 Sample (,71 5w cf 11 € X independently, sampling 2 with probability EI:;"';;F;;: :l()”> ;
[] 5 Letcyg= i e o) and set Gy = G U {cipr}-

6: return C := C},

Q(k''") approximation for adversarial algorithm

Algorithm 5 Greedy k-means++ seeding

Input: X, k, ¢
1: Uniformly independently sample c{, vss ,c[1 €X;
2 Let ¢ = b e, c) and set C1 = {e1}.
3 fori«1,2,....k— 1 do adversarially
Sample cl 5w [+1 eX 1ndependently sampling = with probability ﬁ%

and set Cisq = C; U {cip1}

4
5: Let Ci+1 o
6

—
adversana\ly

: return C := C},

Q(k™ "y approximation for adversarial algorithm

o Algorithm 5 Greedy k-means++ seeding

Input: X, k, ¢
1: Uniformly independently sample ci, vss ,cf €X;

o 2 Let ¢ =g mp——rex (.) and set C) = {a}.
3 fori«1,2,...,k—1do adversarially
; ; : - ineec, d(w,e)?
()) o 4 Sample (,71 5w cf 11 € X independently, sampling 2 with probability EI:;"';;F;;: :l()”> ;
[] 5 Letcyg= i e o) and set Gy = G U {cipr}-

6: return C := C},

Q(k™ "y approximation for adversarial algorithm

o
o
Lemma: Condition on sampling ¢ from some optimal
cluster K. Then,
[
. < X 2
° ° El Z, o min_ c(CUG) d(x,c) 8 x 2 . d(x,u(K))
®e %0
[[()
o] *
° °
[
o Algorithm 5 Greedy k-means++ seeding
Input: X, k, ¢
1: Uniformly independently sample ¢}, ..., e X;
o 2 Let ¢ = i e it ¢) and set C) = {c1}.
3 fori«1,2,....k— 1 do adversarially
() o o 4 Sample c1 i 3554 [+l eX 1ndependently sampling = with probability W%;
([] 5 Let ¢iu1 = and set Cisq = C; U {cip1}

—
adversana\l
6: return C := C}, Y

Q(k™ "y approximation for adversarial algorithm

o Algorithm 5 Greedy k-means++ seeding

Input: X, k, ¢
1: Uniformly independently sample ci, vss ,cf €X;

o 2 Let ¢ =g mp——rex (.) and set C) = {a}.
3 fori«1,2,...,k—1do adversarially
; ; : - ineec, d(w,e)?
()) o 4 Sample (,71 5w cf 11 € X independently, sampling 2 with probability EI:;"';;F;;: :l()”> ;
[] 5 Letcyg= i e o) and set Gy = G U {cipr}-

6: return C := C},

Q(k™ "y approximation for adversarial algorithm

o ®
o
Lemma: Condition on sampling ¢ from some optimal
cluster K. Then,
[
. < X 2
° ° El Z, o min_ c(CUG) d(x,c) 8 x 2 . d(x,u(K))
) o
o o
o [)
o] o
[
{
[
o Algorithm 5 Greedy k-means++ seeding
Input: X, k, ¢
1: Uniformly independently sample ¢}, ..., e X;
o 2 Let ¢ = i e it ¢) and set C) = {c1}.
3 forie1,2,....k— 1 do adversarially
. . . 4 Sample c1 i 3554 [+l eX 1ndependently sampling with probability W%;
([] 5 Let ¢iu1 = and set Cisq = C; U {cip1}

—
adversana\l
6: return C := C}, Y

Q(k™ "y approximation for adversarial algorithm

o Algorithm 5 Greedy k-means++ seeding

Input: X, k, ¢
1: Uniformly independently sample ci, vss ,cf €X;

o 2 Let ¢ =g mp——rex (.) and set C) = {a}.
3 fori«1,2,...,k—1do adversarially
; ; : - ineec, d(w,e)?
()) o 4 Sample (,71 5w cf 11 € X independently, sampling 2 with probability EI:;"';;F;;: :l()”> ;
[] 5 Letcyg= i e o) and set Gy = G U {cipr}-

6: return C := C},

Q(k™ "y approximation for adversarial algorithm

Lemma: Condition on sampling ¢ from some optimal
cluster K. Then,

([]
° E[= _, min, ccue A(x.C) 2]<8x% _ doxu(K))?

LN

Algorithm 5 Greedy k-means++ seeding
Input: X, k, ¢
1: Uniformly independently sample c{ ,,,,, cil €X;

2 Let €1 = ai— e, c) and set C1 = {e1}.

3 fori«1,2,....k— 1 do adversarially
° o & Sample cfy ..., ,+1 ex 1ndependentlv sampling = with probability —W e eﬁ d) 3
o 5. Let ¢ = and set Cisq = C; U {cip1}

—
adversana\l
6: return C := C}, Y

Q(k™ "y approximation for adversarial algorithm

o ®
o
Q(k) | bound*
= ower boun
*Assuming { > log k
0o ®
{ [
® o
o o
L o o
o o]
Y [° [°
{
{
o Algorithm 5 Greedy k-means++ seeding
Input: X, k, ¢
1: Uniformly mdependentl) sample Ll, vss ,(1 €X;
o 2 Let ¢ =g e (L0 C and set Cy = {c1}.
3: for i + 1, 2,.4.7k 1 "do adversarially
[{ . Sample ¢! X | i ! n mingec; d(w,0)?
) 4 ample ¢;, ..., (e +1 € mdependent ly, sampling « with probability Wm
() 5 Let ¢iu1 = and set Cisq = C; U {cip1}

—
adversama\ly

6: return C := C},

But what about greedy?

o Algorithm 5 Greedy k-means++ seeding
Input: X, k, ¢
1: Uniformly independently sample ci, . ,cf €X;
o 2 Let ¢ = argminge(1 1y S pex d(z.c)? and set Cy = {c1}.

3 fori«1,2,...,k—1do

. . 4 Sample ¢! £ X ind dentl line = with probability mingec, dw,c)?
o : ple ¢ q, .-, ¢;11 € X independently, sampling = with probability mm

o s Let ey =argmingga oy D eex Mingec,uge) A)? and set Cipy = C; U {cipr)

6: return C := C},

But what about greedy?

This lower bound does not really work

° o
o anymore because greedy really really
wants to take the center from the middle
cluster.
o
o
° o °
.. o .. Y
o ° o ° o
°
o
o Algorithm 5 Greedy k-means++ seeding
Input: X, k, ¢

1: Uniformly independently sample c} ,,,,, <:€ €X;
2 Let ¢ = argminge(1 1y S pex d(z.c)? and set Cy = {c1}.
3 fori«1,2,...,k—1do
. . 4 S le ¢t £ X ind dentl ling 2 with pr g miee; (@)
() : ample ¢;, ..., ¢iy1 € X independently, sampling = with probability mm
50 Let ciyg = argmingeqy oy Yooy Midvecuge) d(@,)? and set Cipy = C; U {cipr)
6

: return C := C},

But what about greedy?

Lemma: For every cluster in OPT, the
/expected number of points sampled from

Main technical lemma s o 1uster until covered is O(#2 log? k).
for greedy k-means++

But what about greedy?

Lemma: For every cluster in OPT, the
expected number of points sampled from
this cluster until covered is O(£? log? k).

Corollary: The approximation ratio of greedy k-means++ is

O(log k) O(f) O(£2 log? k) = O(log® k).

But what about greedy?

Lemma: For every cluster in OPT, the
expected number of points sampled from
this cluster until covered is O(£? log? k).

Corollary: The approximation ratio of greedy k-means++ is

O(log k) O(f) O(£2 log? k) = O(log® k).

/

original k-means++
analysis

But what about greedy?

Lemma: For every cluster in OPT, the
expected number of points sampled from
this cluster until covered is O(£? log? k).

Corollary: The approximation ratio of greedy k-means++ is

O(log k) O(f) O(£2 log? k) = O(log® k).

/]

original k-means++

) sampling from a
analysis

“covered” cluster is {
times more probable

But what about greedy?

Lemma: For every cluster in OPT, the
expected number of points sampled from
this cluster until covered is O(£? log? k).

Corollary: The approximation ratio of greedy k-means++ is

O(log k) O(f) O(£2 log? k) = O(log® k).

A N

original k-means++

) sampling from a Lemma
analysis

“covered” cluster is {
times more probable

But what about greedy?

Lemma: For every cluster in OPT, the
expected number of points sampled from
this cluster until covered is O(£? log? k).

Corollary: The approximation ratio of greedy k-means++ is

O(log k) O(f) O(£2 log? k) = O(log® k).

(Almost) Matching Lower bound: Combining

1. the k-means++ lower bound,
2. aversion of the Q(k™"*) lower bound.

(3)

Where is O(f? log® k) coming from?

(very fast if at all)

Why there are only log?(k) samples from the same cluster? (£ =2)

WLOG, we always have:

° cost(X \ K)/k = cost(K) < cost(X \ K)*k

- also WLOG, the cost drop by taking

?viit%ollgéz (())ff)g;e\nzgelif/) . .. Y\ K points .in X\Kis gt least cost(K).
o o - Thus, in expectation we sample 1
Qe %, point from K during cost(X \ K)
o © ... : dropping by 2 factor
The closest center to K o - Hence, we sample only log(k) points
° from K!
K °
°
°

Why there are only log?(k) samples from the same cluster? (£ =2)

® X\ K
* ° . °
°
° °
* ° ° °
Y o .. °
The closest center to K °
°

K@ junk o
[
0. [¢
[[
[

Assume [junk| < |K| /

Why there are only log?(k) samples from the same cluster? (£ =2)

® X\K
®* e ‘.o
°
° °
¢ o % o
° o o o,
®
°
o.\\
°
1/log(k) fraction of junk °

goes out!

Summary

e greedy k-means++ is still “well-behaved”.

e Butl view it as a small miracle — for such a simple algorithm, its analysis is
surprisingly subtle.

e Atheoretical justification for the greedy rule?

Algorithm 5 Greedy k-means++ seeding

Input: X, &, ¢
1: Uniformly independently sample c%, e c‘{ € X;
2: Let ¢ = argmin g1 oy > wex d(z,c)? and set C1 = {c1}.
3: fori<«1,2,...,k—1do
. Sample ¢/ £ | € X independent] I ith probability < mnesC; 4"
4: ample c;yq,...,C 41 independently, sampling = with probability ~—= 5~ 2.

S

Let ¢;1 1 = arg mince{c}’__.,cf} > wex MiNgeo,uqe d(, d)? and set C;41 = C; U {ciy1}-

6: return C := C},

