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Presentation overview

● Introduce the (greedy) k-means++ algorithm
● Explain why is the greedy version harder to understand 
● (if time allows) Briefly sketch some ideas of the analysis 

I will:



(1) 
Introducing (greedy) k-means++ 
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Lloyd’s heuristic 
[Lloyd]

k-means++ 
[Arthur, 
Vassilvitskii]



k-means++
Practice: initial solution for Lloyd’s heuristic

Theory: O(log k) approximation guarantee [Arthur, 
Vassilvitskii] 
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k-means++

First center: uniformly at random

Next k-1 centers: sample a point 
proportional to its current cost, i.e., 

P(x sampled) = d(x, c)2 / Σx’∈Xd(x’, c)2

      

c

x
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k-means++
[Arthur, Vassilvitskii] k-means++ is Θ(log k)-approximate.  

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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Greedy k-means++
A different variant of k-means++ commonly used in e.g. the scikit-learn library.  

[Arthur, Vassilvitskii] asked for its analysis. 



Guarantees for this algorithm?  (say ℓ=2)  

Θ(log k)
  k-means++

O(1) ? none?



Greedy k-means++

In the worst case, greedy is not better!

[Bhattacharya, Eube, Röglin, Schmidt]: Ω(ℓ * log k)-approximate
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Guarantees for this algorithm?  (say ℓ=2)  

Θ(log k)
  k-means++

O(1) ? none?   ϴ᷉(log3 k)
  greedy k-means++



Our results:

O( ℓ3 × log3 k ) upper bound, 

Ω( ℓ3 × log3 k / log2 (ℓ×log k)) lower bound

In scikit-learn ℓ = Θ(log k), hence the algorithm is ϴ᷉(log6 k) approximate!



(2) 
Why can’t we just recycle k-means++ 

analysis? 



The main k-means++ Lemma
from [Arthur, Vassilvitski]
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With the new center, its cost gets at most 8 times worse 
than the optimal cost, in expectation. 
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The main k-means++ Lemma
from [Arthur, Vassilvitski]

Lemma: Condition on sampling c from some 
optimal cluster K. Then,  
E[ Σx∈Kminc’∈(C∪c) d(x,c’)2 ] ≤ 8 × Σx∈Kd(x,µ(K))2 

Proof sketch: 
1. Prove it for uniform distribution. 
2. In general,

a. or current centers are far from K (reduces to 1)
b. at least one center is close to K (done)
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The main k-means++ Lemma
from [Arthur, Vassilvitski]

Lemma: Condition on sampling c from some 
optimal cluster K. Then,  
E[ Σx∈Kminc’∈(C∪c) d(x,c’)2 ] ≤ 8 × Σx∈Kd(x,µ(K))2 

The rest of the analysis is about computing the probability of 
sampling from an already “covered” cluster. 



The problem with sampling ℓ >1 points

adversarially

adversarially

The adversarial version is only Ω(k1-1/ℓ) approximate!
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E[ Σx∈Kminc’∈(C∪c) d(x,c’)2 ] ≤ 8 × Σx∈Kd(x,µ(K))2 



Ω(k1-1/ℓ) approximation for adversarial algorithm

adversarially

adversarially

⟹ Ω(k) lower bound*
*Assuming ℓ > log k 
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But what about greedy?

This lower bound does not really work 
anymore because greedy really really 
wants to take the center from the middle 
cluster. 
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for greedy k-means++
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But what about greedy?

Lemma: For every cluster in OPT, the 
expected number of points sampled from 
this cluster until covered is O(ℓ2 log2 k). 

Corollary: The approximation ratio of greedy k-means++ is 

           O(log k) O(ℓ) O(ℓ2 log2 k) = O(ℓ3 log3 k).

(Almost) Matching Lower bound: Combining 

1. the k-means++ lower bound,
2. a version of the Ω(k1-1/ℓ)  lower bound.  



(3) 
Where is O(ℓ2 log2 k) coming from?

(very fast if at all) 



Why there are only log2(k) samples from the same cluster? (ℓ =2)

K

The closest center to K

no points of X \ K here
(with loss of generality) X \ K

- WLOG, we always have:

cost(X \ K)/k ≤ cost(K) ≤ cost(X \ K)*k

- also WLOG, the cost drop by taking 
points in X \ K is at least cost(K).

- Thus, in expectation we sample 1 
point from K during cost(X \ K) 
dropping by 2 factor

- Hence, we sample only log(k) points 
from K!



Why there are only log2(k) samples from the same cluster? (ℓ =2)

K

The closest center to K

X \ K

Assume |junk| < |K|

junk



Why there are only log2(k) samples from the same cluster? (ℓ =2)

X \ K

1/log(k) fraction of junk
goes out!



Summary
● greedy k-means++ is still “well-behaved”. 
● But I view it as a small miracle – for such a simple algorithm, its analysis is 

surprisingly subtle. 
● A theoretical justification for the greedy rule?


