A Nearly Tight Analysis of Greedy k-means++

Christoph Grunau, Ahmet Alper Özüdogru, Václav Rozhoň, Jakub Tětek

Presentation overview

I will:

- Introduce the (greedy) k-means++ algorithm
- Explain why is the greedy version harder to understand
- (if time allows) Briefly sketch some ideas of the analysis

(1) Introducing (greedy) k-means++

Commonly used formalization of clustering

For a set $X \subseteq \mathbb{R}^d$ find a set of k centers C that minimizes $\sum_{x \in X} \min_{c \in C} d(x,c)^2$

Commonly used formalization of clustering

For a set $X \subseteq \mathbb{R}^d$ find a set of k centers C that minimizes $\sum_{x \in X} \min_{c \in C} d(x,c)^2$

Commonly used formalization of clustering

For a set $X \subseteq \mathbb{R}^d$ find a set of k centers C that minimizes $\sum_{x \in X} \min_{c \in C} d(x,c)^2$

Commonly used formalization of clustering

Hard to approximate within 1.07 factor [Addad, Srikanta], but … can be approximated within 5.92 factor [Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, Shyam Narayanan … PTAS for fixed k [Kumar, Sabharwal, Sen] … PTAS for fixed d [Friggstad, Rezapour, Salavatipour] [Addad, Klein, Mathieu]

Hard to approximate within 1.07 factor [Addad, Srikanta], but … can be approximated within 5.92 factor [Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, Shyam Narayanan … PTAS for fixed k [Kumar, Sabharwal, Sen] … PTAS for fixed d [Friggstad, Rezapour, Salavatipour] [Addad, Klein, Mathieu]

Lloyd's heuristic [Lloyd]

theory practice practice

Hard to approximate within 1.07 factor [Addad, Srikanta], but … can be approximated within 5.92 factor [Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, Shyam Narayanan … PTAS for fixed k [Kumar, Sabharwal, Sen] … PTAS for fixed d [Friggstad, Rezapour, Salavatipour] [Addad, Klein, Mathieu]

k-means++ [Arthur, Vassilvitskii]

Lloyd's heuristic [Lloyd]

theory practice practice

Practice: initial solution for Lloyd's heuristic

Theory: O(log k) approximation guarantee [Arthur, Vassilvitskii]

First center: uniformly at random

First center: uniformly at random

First center: uniformly at random

$$
P(x \text{ sampled}) = d(x, c)^2 / \sum_{x' \in X} d(x', c)^2
$$

First center: uniformly at random

First center: uniformly at random

First center: uniformly at random

First center: uniformly at random

First center: uniformly at random

[Arthur, Vassilvitskii] k-means++ is Θ(log k)-approximate.

<https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html>

Algorithm 4 k-means + + seeding

Input: X, k

- 1: Uniformly sample $x \in X$ and set $C_1 = \{x\}.$
- 2: for $i \leftarrow 1, 2, \ldots, k-1$ do

Sample $x \in X$ with probability $\frac{\min_{c \in C_i} d(x,c)^2}{\sum_{c \in X} \min_{c \in C_i} d(x,c)^2}$ and set $C_{i+1} = C_i \cup \{x\}.$ $3:$

4: return $C := C_k$

Greedy Vs. Non-greedy

Greedy Vs. Non-greedy

Greedy Vs. Non-greedy

Greedy Vs. Non-greedy

A different variant of k-means++ commonly used in e.g. the scikit-learn library.

[Arthur, Vassilvitskii] asked for its analysis.

Algorithm 5 Greedy k-means++ seeding

Input: X, k, ℓ

- 1: Uniformly independently sample $c_1^1, \ldots, c_1^\ell \in X;$
- 2. Let $c_1 = \arg \min_{c \in \{c_1^1, ..., c_1^{\ell}\}} \sum_{x \in X} d(x, c)^2$ and set $C_1 = \{c_1\}.$

$$
3: for i \leftarrow 1, 2, \ldots, k-1 do
$$

- Sample $c_{i+1}^1, \ldots, c_{i+1}^{\ell} \in X$ independently, sampling x with probability $\frac{\min_{c \in C_i} d(x,c)^2}{\sum_{x \in X} \min_{c \in C_i} d(x,c)^2}$. $4:$
- Let $c_{i+1} = \arg \min_{c \in \{c_i^1, ..., c_i^{\ell}\}} \sum_{x \in X} \min_{c' \in C_i \cup \{c\}} d(x, c')^2$ and set $C_{i+1} = C_i \cup \{c_{i+1}\}.$ $5:$

6: return $C := C_k$

Guarantees for this algorithm? (say $l=2$)

In the worst case, greedy is not better!

[Bhattacharya, Eube, Röglin, Schmidt]: Ω(ℓ * log k)-approximate

Guarantees for this algorithm? (say $l=2$)

Θ(log k) k-means++ $O(1)$? $O(\log k)$ none?

Guarantees for this algorithm? (say $l=2$)

Θ(log k) k-means++ $O(1)$? $O(\log k)$ $O(\log^3 k)$ $\log^3 2k$ none?

 $\Theta(\log^3 k)$ greedy k-means++

Our results:

- O($l^3 \times \log^3 k$) upper bound,
- $\Omega($ ℓ^3 \times log 3 k / log 2 (ℓ \times log k)) lower bound

In scikit-learn $\ell = \Theta(\log k)$, hence the algorithm is $\Theta(\log^6 k)$ approximate!

(2) Why can't we just recycle k-means++ analysis?

The main k-means++ Lemma from [Arthur, Vassilvitski]

from [Arthur, Vassilvitski]

Lemma: Condition on sampling c from some optimal cluster K. Then, $E\left[\sum_{x \in K} \min_{c' \in (C \cup c)} d(x, c')^2\right] \leq 8 \times \sum_{x \in K} d(x, \mu(K))^2$

from [Arthur, Vassilvitski]

Lemma: Condition on sampling c from some optimal cluster K. Then, $E\left[\sum_{x \in K} min_{c' \in (C \cup c)} d(x, c')^2\right] \leq 8 \times \sum_{x \in K} d(x, \mu(K))^2$

K

from [Arthur, Vassilvitski]

Lemma: Condition on sampling c from some optimal cluster K. Then, $E\left[\sum_{x \in K} min_{c' \in (C \cup c)} d(x, c')^2\right] \leq 8 \times \sum_{x \in K} d(x, \mu(K))^2$

With the new center, its cost gets at most 8 times worse than the optimal cost, in expectation.

from [Arthur, Vassilvitski]

Lemma: Condition on sampling c from some optimal cluster K. Then, $E\left[\sum_{x \in K} min_{c' \in (C \cup c)} d(x, c')^2\right] \leq 8 \times \sum_{x \in K} d(x, \mu(K))^2$

Proof sketch:

- Prove it for uniform distribution.
- 2. In general,
	- a. or current centers are far from K (reduces to 1)
	- b. at least one center is close to K (done)

from [Arthur, Vassilvitski]

Lemma: Condition on sampling c from some optimal cluster K. Then, $\mathbb{E} \Big\{ \sum_{x \in K} \min_{c' \in (C \cup c)} d(x, c') \Big\} \Big] \leq 8 \times \sum_{x \in K} d(x, \mu(K))^2$

from [Arthur, Vassilvitski]

Lemma: Condition on sampling c from some optimal cluster K. Then, $\mathbb{E}[\sum_{x \in K} \min_{c' \in (C \cup c)} d(x, c')^2] \leq 8 \times \sum_{x \in K} d(x, \mu(K))^2$

The rest of the analysis is about computing the probability of sampling from an already "covered" cluster.

The problem with sampling $\ell > 1$ points

The adversarial version is only $\Omega(k^{1-1/\ell})$ approximate!

Lemma: Condition on sampling c from some optimal cluster K. Then,

 $E\left[\sum_{x \in K} \min_{c' \in (C \cup c)} d(x, c')^2\right] \leq 8 \times \sum_{x \in K} d(x, \mu(K))^2$

Lemma: Condition on sampling c from some optimal cluster K. Then, $E\left[\sum_{x \in K} \min_{c' \in (C \cup c)} d(x, c')^2\right] \leq 8 \times \sum_{x \in K} d(x, \mu(K))^2$

Algorithm 5 Greedy k -means++ seeding Input: X, k, ℓ $\begin{array}{l} \text{1:} \text{ Uniformly independently sample } c^1_1, \ldots, c^{\ell}_1 \in X;\\ \text{2:} \text{ Let } c_1 = \arg\min_{c \in \{c^1_1, \ldots, c^{\ell}_1\}} \sum_{x \in X} d(x, c)^2 \text{ and set } C_1 = \{c_1\}.\\ \text{3:} \text{ for } i \leftarrow 1, 2, \ldots, k-1 \textbf{ do} \end{array}$ 4: Sample $c_{i+1}^1, \ldots, c_{i+1}^\ell \in X$ independently, sampling x with probability $\frac{\min_{c \in C_i} d(x,c)^2}{\sum_{x \in X} \min_{c \in C_i} d(x,c)^2}$.
5: Let $c_{i+1} = \arg \min_{c \in \{c_1^1, \ldots, c_i^\ell\}} \sum_{x \in X} \min_{c' \in C_i \cup \{c\}} d(x,c')^2$ and set $C_{i+1} = C_i \cup \{c_{$

6: return $C := C_k$

This lower bound does not really work anymore because greedy really really wants to take the center from the middle cluster.

 $4:$

 $5:$

Algorithm 5 Greedy k -means++ seeding Input: X, k, ℓ $\begin{array}{l} \text{1:} \text{ Uniformly independently sample } c_1^1, \ldots, c_1^\ell \in X;\\ \text{2:} \text{ Let } c_1 = \arg\min_{c \in \{c_1^1, \ldots, c_1^\ell\}} \sum_{x \in X} d(x, c)^2 \text{ and set } C_1 = \{c_1\}.\\ \text{3:} \text{ for } i \leftarrow 1, 2, \ldots, k-1 \text{ do} \end{array}$ Sample $c_{i+1}^1, \ldots, c_{i+1}^{\ell} \in X$ independently, sampling x with probability $\frac{\min_{c \in C_i} d(x,c)^2}{\sum_{x \in X} \min_{c \in C_i} d(x,c)^2}$. Let $c_{i+1} = \arg \min_{c \in \{c_i^1, ..., c_i^{\ell}\}} \sum_{x \in X} \min_{c' \in C_i \cup \{c\}} d(x, c')^2$ and set $C_{i+1} = C_i \cup \{c_{i+1}\}.$ 6: return $C := C_k$

for greedy k-means++

Lemma: For every cluster in OPT, the expected number of points sampled from Main technical lemma this cluster until covered is $O(l^2 \log^2 k)$.

Lemma: For every cluster in OPT, the expected number of points sampled from this cluster until covered is $O(l^2 \log^2 k)$.

Corollary: The approximation ratio of greedy k-means++ is

 $O(log k) O(l) O(l^2 log^2 k) = O(l^3 log^3 k).$

Lemma: For every cluster in OPT, the expected number of points sampled from this cluster until covered is $O(l^2 \log^2 k)$.

Corollary: The approximation ratio of greedy k-means++ is

```
O(log k) O(l) O(l^2 log^2 k) = O(l^3 log^3 k).original k-means++
analysis
```
Lemma: For every cluster in OPT, the expected number of points sampled from this cluster until covered is $O(l^2 \log^2 k)$.

Corollary: The approximation ratio of greedy k-means++ is

```
O(log k) O(l) O(l^2 log^2 k) = O(l^3 log^3 k).original k-means++
original Rancaris sampling from a<br>analysis sampling from a
                          "covered" cluster is ℓ 
                          times more probable
```
Lemma: For every cluster in OPT, the expected number of points sampled from this cluster until covered is $O(l^2 \log^2 k)$.

Corollary: The approximation ratio of greedy k-means++ is

Lemma: For every cluster in OPT, the expected number of points sampled from this cluster until covered is $O(l^2 \log^2 k)$.

Corollary: The approximation ratio of greedy k-means++ is

 $O(log k) O(l) O(l^2 log^2 k) = O(l^3 log^3 k).$

(Almost) Matching Lower bound: Combining

- 1. the k-means++ lower bound,
- 2. a version of the $\Omega(k^{1-1/\ell})$ lower bound.

(3) Where is $O(l^2 \log^2 k)$ coming from?

(very fast if at all)

Why there are only $log²(k)$ samples from the same cluster? ($\ell = 2$)

WLOG, we always have:

 $cost(X \setminus K)/k \leq cost(K) \leq cost(X \setminus K)^*k$

- also WLOG, the cost drop by taking points in $X \setminus K$ is at least cost(K).
- Thus, in expectation we sample 1 point from K during $cost(X \setminus K)$ dropping by 2 factor
- Hence, we sample only $log(k)$ points from K!

Why there are only $log²(k)$ samples from the same cluster? ($\ell = 2$)

Why there are only $log²(k)$ samples from the same cluster? ($\ell = 2$)

Summary

- *greedy k-means++* is still "well-behaved".
- But I view it as a small miracle for such a simple algorithm, its analysis is surprisingly subtle.
- A theoretical justification for the greedy rule?

Algorithm 5 Greedy k -means++ seeding

Input: X, k, ℓ

- 1: Uniformly independently sample $c_1^1, \ldots, c_1^{\ell} \in X$;
- 2: Let $c_1 = \arg \min_{c \in \{c_1^1, ..., c_1^{\ell}\}} \sum_{x \in X} d(x, c)^2$ and set $C_1 = \{c_1\}.$ 3: for $i \leftarrow 1, 2, ..., k - 1$ do

Sample $c_{i+1}^1, \ldots, c_{i+1}^{\ell} \in X$ independently, sampling x with probability $\frac{\min_{c \in C_i} d(x,c)^2}{\sum_{x \in X} \min_{c \in C_i} d(x,c)^2}$. $4:$ Let $c_{i+1} = \arg \min_{c \in \{c_i^1, ..., c_i^{\ell}\}} \sum_{x \in X} \min_{c' \in C_i \cup \{c\}} d(x, c')^2$ and set $C_{i+1} = C_i \cup \{c_{i+1}\}.$ $5:$

6: return $C := C_k$