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The LOCAL model of distributed graph algorithms
● Undirected graph on n nodes

● One computer in each node

● Synchronous message passing rounds

● Unbounded message size and computation

● Initially, nodes know only (upper bound on) n and 

their unique O(log n) bit identifier

● In the end, each node should know its part of output

● Time complexity: number of rounds
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The LOCAL model of distributed graph algorithms
Why unique O(log n) bit identifier?

Otherwise, not much to be done with deterministic algorithms, especially on 
vertex-transitive graphs! 
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Network decomposition
Network decomposition with C colors and 
diameter D:

Coloring of the vertices with C colors, such     
that each component induced by a         
particular color has diameter at most D. 

(2,6) decomposition



Weak-diameter network decomposition

(3,4) decomposition

Weak-diameter network decomposition 
with C colors and weak-diameter D:

Coloring of the vertices with C colors, such 
any two vertices in a component are of 
distance ≤D in the original graph



Network decomposition
But is there such a thing (with reasonable parameters)? 

Yes, we let’s see a sequential algorithm for (O(log n), O(log n)) network 
decomposition. 

(Sequential) ball carving

1. clusters at least ½ fraction of vertices
2. such that each cluster has diameter O(log n) and
3. clusters are non-adjacent

⇒(O(log n), O(log n)) network decomposition by repeated application
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Sequential ball carving

we let a cluster grow, while its 
size increases by a factor of 2
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Sequential ball carving

1. clusters at least ½ fraction of vertices

Each cluster C is responsible for deleting < |C| vertices  
⇒ < ½ fraction of vertices deleted.

2. each cluster has diameter O(log n) 

After 1+log n steps, a cluster would contain the whole 
graph, as 21+log n > n.        

3. clusters are non-adjacent

By construction. 
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Distributed ball carving
We follow the sequential strategy

and show a deterministic  poly(log 
n)-round algorithm that 

1. clusters at least ½ fraction of 
vertices

2. such that each cluster has 
weak-diameter O(log3 n) and

3. clusters are non-adjacent



Distributed ball carving
We follow the sequential strategy

and show a deterministic  poly(log 
n)-round algorithm that 

1. clusters at least ½ fraction of 
vertices

2. such that each cluster has 
weak-diameter O(log3 n) and

3. clusters are non-adjacent

At the beginning, each vertex 
thinks of itself as the root of a 
cluster



Distributed ball carving
We follow the sequential strategy

and show a deterministic  poly(log 
n)-round algorithm that 

1. clusters at least ½ fraction of 
vertices

2. such that each cluster has 
weak-diameter O(log3 n) and

3. clusters are non-adjacent

At the beginning, each vertex 
thinks of itself as the root of a 
cluster



Distributed ball carving
We follow the sequential strategy

and show a deterministic  poly(log 
n)-round algorithm that 

1. clusters at least ½ fraction of 
vertices

2. such that each cluster has 
weak-diameter O(log3 n) and

3. clusters are non-adjacent

At the beginning, each vertex 
thinks of itself as the root of a 
cluster



Distributed ball carving
We follow the sequential strategy

and show a deterministic  poly(log 
n)-round algorithm that 

1. clusters at least ½ fraction of 
vertices

2. such that each cluster has 
weak-diameter O(log3 n) and

3. clusters are non-adjacent

At the beginning, each vertex 
thinks of itself as the root of a 
cluster



Distributed ball carving

1011

0000

0101

1100

1101

1010

0110

1111

1110

0001

0100

1001

0010

1000

The identifiers have B = O(log n) bits. 

The algorithm has B phases. 

In the i-th phase we deal with “bad 
edges” between clusters whose 
identifiers differ in the i-th bit. 



Distributed ball carving

1011

0000

0101

1100

1101

1010

0110

1111

1110

0001

0100

1001

0010

1000

The identifiers have B = O(log n) bits. 

The algorithm has B phases. 

In the i-th phase we deal with “bad 
edges” between clusters whose 
identifiers differ in the i-th bit. 



Distributed ball carving

blue clusters grow, 
red vertices are 
recolored/deleted
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|C|/(2B) vertices are proposing. 
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Distributed ball carving
Red vertices propose to join an arbitrary 
neighbouring blue cluster.

A blue cluster C accepts all proposals if at least 
|C|/(2B) vertices are proposing. 

Otherwise, it denies all of them, therefore 
deleting proposing red nodes permanently. 

We let this process run for 4B ln n steps. 
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3. clusters are non-adjacent

Property 2: 

The weak-diameter grows additively by ≤ 2 
in each step. 
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deleted in total



Distributed ball carving
1. clusters at least ½ fraction of vertices
2. such that each cluster has 

weak-diameter O(log3 n)
3. clusters are non-adjacent

Property 3: 
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2. such that each cluster has 
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Property 3: 

At the end of each phase, there are no 
edges between red and blue nodes. 

Otherwise there is a blue cluster of size       
> (1+1/(2B))4B ln n > n. 
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Property 3: 
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Distributed ball carving

The running time of the whole algorithm  is 

O(log7 n) = 

O(log n) # of colors of decomposition

. O(log n) # of phases

. O(log2 n) steps per phase

. O(log3 n) complexity of one step
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Distributed ball carving

The running time of the whole algorithm  is 

O(log7 n) = 

O(log n) # of colors of decomposition

. O(log n) # of phases

. O(log2 n) steps per phase

. O(log3 n) complexity of one step

The whole algorithm works in the CONGEST 
model (see Section 2.2 in our paper). 
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General derandomization theorem
Theorem: [Ghaffari, Harris, Kuhn FOCS’18 + R., Ghaffari STOC’20] 

P-LOCAL = P-RLOCAL. 

P-LOCAL: problems* solvable by a deterministic poly(log n)-round      
ooo    algorithm in the LOCAL model

P-RLOCAL: problems* solvable by a randomized poly(log n)-round      
ooo    algorithm in the LOCAL model

*problems needs to be locally checkable = if a proposed solution is not correct, at least one node 
recognises that after looking at its poly(log n)-hop neighbourhood 
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SLOCAL - sequential variant of the LOCAL model
Iterate over nodes in adversarial order.

Decide their label based only on their r-hop neighbourhood. 

Write the label to the node so that other nodes can see it. 

P-SLOCAL: r = poly(log n), locally checkable

P-RSLOCAL: r = poly(log n), locally checkable, can use randomness
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P-LOCAL

“deterministic distributed”

P-SLOCAL

“deterministic sequential”

direct

Proof: for P-SLOCAL algorithm with locality r, construct network decomposition on 
Gr in O(r log7 n) rounds with C=O(log n), D=O(log3 n); iterate over color classes and 
simulate the sequential algorithm in O(log n  .  r log3 n) rounds. 

deterministic network 
decomposition     
[R., Ghaffari STOC’20]



P-LOCAL

“deterministic distributed”

P-SLOCAL

“deterministic sequential”

direct

By the way: Network decomposition is a complete problem for this reduction. 

deterministic network 
decomposition     
[R., Ghaffari STOC’20]



Corollary: There is an efficient deterministic algorithm for Δ+1 coloring, maximal 
independent set, strong diameter network decomposition

P-LOCAL

“deterministic distributed”

P-SLOCAL

“deterministic sequential”

direct
deterministic network 
decomposition     
[R., Ghaffari STOC’20]
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“randomized distributed”

P-RSLOCAL

“randomized sequential”

directdirect
randomized network 

decomposition           
[Linial, Saks SODA ‘91]

P-LOCAL

“deterministic distributed”

P-SLOCAL

“deterministic sequential”

deterministic network 
decomposition     
[R., Ghaffari STOC’20]



direct

direct

conditional expectation* 
[Ghaffari, Harris, Kuhn FOCS’18]

* for problems locally checkable in poly(log n) rounds

P-RLOCAL

“randomized distributed”

P-RSLOCAL

“randomized sequential”

P-LOCAL

“deterministic distributed”

P-SLOCAL

“deterministic sequential”

deterministic network 
decomposition     
[R., Ghaffari STOC’20]



direct

direct

conditional expectation* 
[Ghaffari, Harris, Kuhn FOCS’18] 

(*checkability)

Corollary: There is an efficient deterministic algorithm for Lovász local lemma,... 

P-RLOCAL

“randomized distributed”

P-RSLOCAL

“randomized sequential”

P-LOCAL

“deterministic distributed”

P-SLOCAL

“deterministic sequential”

deterministic network 
decomposition     
[R., Ghaffari STOC’20]



conditional expectation* 
(*checkability)

deterministic network 
decomposition

“randomized distributed”

“randomized sequential”

“deterministic distributed”

“deterministic sequential”

We see a clean first-order theory of the LOCAL model.
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LOCAL, deterministic

poly(log n)

LOCAL, randomized

poly(log log n)

MPC, randomized

O(log log log n)

shattering [Chang, Li, Pettie STOC’18]                    
+ network decomposition [R Ghaffari STOC’20] 

conditioned on hardness of connectivity 
in MPC [Ghaffari, Kuhn, Uitto FOCS’19]

graph exponentiation       

[Chang, Fischer, Ghaffari, Uitto, Zheng PODC’19]

amplification of success probability                              
[Chang, Kopelowitz, and Pettie FOCS’16]

Δ+1 coloring



Maximal independent set (MIS)

Upper bound Lower bound

LOCAL, 
deterministic

 O(log7 n)                                 
[R. Ghaffari STOC’20] Ω(log n / log log n) 

[Balliu et al. FOCS’19]

LOCAL, 
randomized

O(log Δ) + poly(log log n) 
[Ghaffari SODA’16] 

Ω(log Δ / log log Δ)                           
[Kuhn et al. J.ACM’16]

o(Δ) + o(log log n / log log log n)       
is impossible [Balliu et al. FOCS’19]



Lovász local lemma
Each node corresponds to “bad” event 
independent on all but neighbouring events. 

If probability of each event is small enough, can 
we instantiate them so that no bad event occurs?



Lovász local lemma (p = Δ-10)

Upper bound Lower bound

LOCAL, 
deterministic

 poly(log n)                               
[Ghaffari, Harris, Kuhn FOCS’18 + R. Ghaffari STOC’20] Ω(log n) 

[Chang, Kopelowitz, Pettie FOCS’16]

LOCAL, 
randomized

O(log2 n)                                
[Moser, Tardos J.ACM’10]

O(Δ2) + poly(log log n)         
[Fischer, Ghaffari DISC’17] 

Ω(log log n)                            
[Brandt et al., SODA’16]



Lovász local lemma

Theorem [Chang, Pettie FOCS’17]: 

In graphs of degree O(1), problems checkable with locality O(1) have randomized 
complexity of either Ω(log n) or O(TLLL). 

Here, TLLL is the randomized complexity of Lovász local lemma on constant degree 
graphs. 
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CONGEST model

Recall: In one round, only O(log n) bits of information can be sent through an edge.

In general, we cannot collect the whole topology of a cluster

Theorem: [Censor-Hillel, Parter, Schwartzman DISC’17; R. Ghaffari STOC’20] 

There is poly(log n)-round CONGEST algorithm for MIS. 

Theorem: [Bamberger, Kuhn, Maus PODC’20; R. Ghaffari STOC’20] 

There is poly(log n)-round CONGEST algorithm for Δ+1 coloring. 



Open problems

Find a combinatorial deterministic poly(log n)-round algorithm for MIS, 
Δ+1 coloring, ... in the CONGEST model. 

Find deterministic algorithm for MIS, Δ+1 coloring, … in the LOCAL 
model faster than state-of-the-art algorithm for network decomposition.
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Summary

P-RLOCAL

P-RSLOCAL

P-LOCAL

P-SLOCAL

det. LOCAL rand. LOCAL MPC

Network decomposition

Distributed ball carving
Δ+1 coloring and connections across models

Big picture of the LOCAL model


