# Distributed Derandomization via Network Decomposition

Longer talk



Mohsen Ghaffari (ETH),



Vasek Rozhon (ETH)

#### Plan

- More on LOCAL and CONGEST model
- 2. A deterministic algorithm for network decomposition.
  - a. Sequential algorithm
  - b. Distributed algorithm
- 3. Applications
  - a. Derandomization and a bigger picture of the **LOCAL** model
  - b. Δ+1 coloring, MIS, Lovász local lemma
  - c. **CONGEST** model and open problems

#### Plan

1. More on **LOCAL** and **CONGEST** model

- Undirected graph on *n* nodes
- One computer in each node
- Synchronous message passing rounds
- Unbounded message size and computation
- Initially, nodes know only (upper bound on) *n* and their unique *O*(log *n*) bit identifier
- In the end, each node should know its part of output
- Time complexity: number of rounds



- Undirected graph on *n* nodes
- One computer in each node
- Synchronous message passing rounds
- Unbounded message size and computation
- Initially, nodes know only (upper bound on) n and their unique  $O(\log n)$  bit identifier
- In the end, each node should know its part of output
- Time complexity: number of rounds



"unbounded message size and computation":

**CONGEST** model: message size bounded to  $O(\log n)$ .

deterministic LOCAL algorithm is a function mapping neighbourhoods to labels.

"unbounded message size and computation":

**CONGEST** model: message size bounded to  $O(\log n)$ .

deterministic **LOCAL** algorithm is a function mapping neighbourhoods to labels.



"unbounded message size and computation":

**CONGEST** model: message size bounded to  $O(\log n)$ .

deterministic **LOCAL** algorithm is a function mapping neighbourhoods to labels.



Why unique  $O(\log n)$  bit identifier?

Otherwise, not much to be done with deterministic algorithms, especially on vertex-transitive graphs!



#### Plan

- More on LOCAL and CONGEST model
- 2. A deterministic algorithm for network decomposition.
  - a. Sequential algorithm

#### Network decomposition

**Network decomposition** with **C** colors and diameter D: Coloring of the vertices with **C** colors, such that each component induced by a particular color has diameter at most D. (2,6) decomposition

#### Weak-diameter network decomposition

#### Weak-diameter network decomposition



#### Network decomposition

But is there such a thing (with reasonable parameters)?

Yes, we let's see a sequential algorithm for  $(O(\log n), O(\log n))$  network decomposition.

(Sequential) ball carving

- 1. clusters at least ½ fraction of vertices
- 2. such that each cluster has diameter  $O(\log n)$  and
- 3. clusters are non-adjacent

 $\Rightarrow$ (O(log n), O(log n)) network decomposition by repeated application













































1. clusters at least ½ fraction of vertices

Each cluster C is responsible for deleting < |C| vertices  $\Rightarrow < \frac{1}{2}$  fraction of vertices deleted.

2. each cluster has diameter  $O(\log n)$ 

After  $1 + \log n$  steps, a cluster would contain the whole graph, as  $2^{1 + \log n} > n$ .

clusters are non-adjacentBy construction.



### Plan

- More on LOCAL and CONGEST model
- 2. A deterministic algorithm for network decomposition.
  - a. Sequential algorithm
  - b. Distributed algorithm

We follow the sequential strategy and show a deterministic poly(log *n*)-round algorithm that

- clusters at least ½ fraction of vertices
- 2. such that each cluster has weak-diameter  $O(\log^3 n)$  and
- 3. clusters are non-adjacent



We follow the sequential strategy and show a deterministic poly(log *n*)-round algorithm that

- clusters at least ½ fraction of vertices
- 2. such that each cluster has weak-diameter  $O(\log^3 n)$  and
- 3. clusters are non-adjacent



We follow the sequential strategy and show a deterministic poly(log *n*)-round algorithm that

- 1. clusters at least ½ fraction of vertices
  - 2. such that each cluster has weak-diameter  $O(\log^3 n)$  and
  - 3. clusters are non-adjacent



We follow the sequential strategy and show a deterministic poly(log

1. clusters at least ½ fraction of vertices

*n*)-round algorithm that

- ✓ 2. such that each cluster has weak-diameter O(log³ n) and
  - 3. clusters are non-adjacent



We follow the sequential strategy and show a deterministic poly(log *n*)-round algorithm that

- 1. clusters at least ½ fraction of vertices
- ✓ 2. such that each cluster has weak-diameter O(log³ n) and
- **X** 3. clusters are non-adjacent



The identifiers have  $B = O(\log n)$  bits.

The algorithm has *B* phases.

In the *i*-th phase we deal with "bad edges" between clusters whose identifiers differ in the *i*-th bit.



The identifiers have  $B = O(\log n)$  bits.

The algorithm has *B* phases.

In the *i*-th phase we deal with "bad edges" between clusters whose identifiers differ in the *i*-th bit.







Red vertices propose to join an arbitrary neighbouring blue cluster.

A blue cluster C accepts all proposals if at least |C|/(2B) vertices are proposing.



Red vertices propose to join an arbitrary neighbouring blue cluster.

A blue cluster C accepts all proposals if at least |C|/(2B) vertices are proposing.



Red vertices propose to join an arbitrary neighbouring blue cluster.

A blue cluster C accepts all proposals if at least |C|/(2B) vertices are proposing.



Red vertices propose to join an arbitrary neighbouring blue cluster.

A blue cluster C accepts all proposals if at least |C|/(2B) vertices are proposing.



Red vertices propose to join an arbitrary neighbouring blue cluster.

A blue cluster C accepts all proposals if at least |C|/(2B) vertices are proposing.

Otherwise, it denies all of them, therefore deleting proposing red nodes permanently.

We let this process run for 4B ln n steps.



In the second phase (and other phases) we do the same, based on the *i*-th rightmost bit.

Note that the coloring here has different meaning than in the first phase.

Red vertices propose, not whole clusters.

11<mark>0</mark>1



In the second phase (and other phases) we do the same, based on the *i*-th rightmost bit.

Note that the coloring here has different meaning than in the first phase.



In the second phase (and other phases) we do the same, based on the *i*-th rightmost bit.

Note that the coloring here has different meaning than in the first phase.



In the second phase (and other phases) we do the same, based on the *i*-th rightmost bit.

Note that the coloring here has different meaning than in the first phase.



In the second phase (and other phases) we do the same, based on the *i*-th rightmost bit.

Note that the coloring here has different meaning than in the first phase.













- 1. clusters at least ½ fraction of vertices
- such that each cluster has weak-diameter O(log<sup>3</sup> n)
- 3. clusters are non-adjacent

#### Property 2:

The weak-diameter grows additively by  $\leq 2$  in each step.



- 1. clusters at least ½ fraction of vertices
- such that each cluster has weak-diameter O(log<sup>3</sup> n)
- 3. clusters are non-adjacent

#### Property 2:

The weak-diameter grows additively by  $\leq 2$  in each step.



- 1. clusters at least ½ fraction of vertices
- such that each cluster has weak-diameter O(log<sup>3</sup> n)
- 3. clusters are non-adjacent

#### Property 2:

The weak-diameter grows additively by  $\leq 2$  in each step.



- 1. clusters at least ½ fraction of vertices
- such that each cluster has weak-diameter O(log<sup>3</sup> n)
- 3. clusters are non-adjacent

#### Property 2:

The weak-diameter grows additively by  $\leq 2$  in each step.

We have B phases and each phase has 4B ln *n* steps.



- 1. clusters at least ½ fraction of vertices
- such that each cluster has weak-diameter O(log<sup>3</sup> n)
- 3. clusters are non-adjacent

#### Property 2:

The weak-diameter grows additively by  $\leq 2$  in each step.

We have B phases and each phase has 4B ln *n* steps.

Hence, the weak diameter is  $O(B^2 \log n) = O(\log^3 n)$ .

## 



- 1. clusters at least ½ fraction of vertices
- 2. such that each cluster has weak-diameter O(log<sup>3</sup> *n*)
  - 3. clusters are non-adjacent

#### Property 2:

The weak-diameter grows additively by  $\leq 2$  in each step.

We have B phases and each phase has 4B ln *n* steps.

Hence, the weak diameter is  $O(B^2 \log n) = O(\log^3 n)$ .

Observation: If a blue cluster does not grow in some step, it does not have red neighbours in any future steps.



Observation: If a blue cluster does not grow in some step, it does not have red neighbours in any future steps.



Observation: If a blue cluster does not grow in some step, it does not have red neighbours in any future steps.



Observation: If a blue cluster does not grow in some step, it does not have red neighbours in any future steps.



## 



- 1. clusters at least ½ fraction of vertices
- 2. such that each cluster has weak-diameter O(log<sup>3</sup> n)
  - 3. clusters are non-adjacent

#### Property 1:

## 



- 1. clusters at least ½ fraction of vertices
- 2. such that each cluster has weak-diameter O(log<sup>3</sup> n)
  - 3. clusters are non-adjacent

#### Property 1:

Each blue cluster C is at the end of a phase responsible for |C|/(2B) deleted red vertices.

## 



- 1. clusters at least ½ fraction of vertices
- 2. such that each cluster has weak-diameter O(log<sup>3</sup> *n*)
  - 3. clusters are non-adjacent

#### Property 1:

Each blue cluster C is at the end of a phase responsible for |C|/(2B) deleted red vertices.

 $\Rightarrow \le 1/(2B)$  fraction of vertices deleted per phase



- 1. clusters at least ½ fraction of vertices
- 2. such that each cluster has weak-diameter O(log<sup>3</sup> *n*)
  - 3. clusters are non-adjacent

#### Property 1:

Each blue cluster C is at the end of a phase responsible for |C|/(2B) deleted red vertices.

 $\Rightarrow \le 1/(2B)$  fraction of vertices deleted per phase

 $\Rightarrow \leq B \cdot 1/(2B) = \frac{1}{2}$  fraction of vertices deleted in total





- . clusters at least ½ fraction of vertices
- 2. such that each cluster has weak-diameter O(log<sup>3</sup> n)
  - 3. clusters are non-adjacent

#### Property 1:

Each blue cluster C is at the end of a phase responsible for |C|/(2B) deleted red vertices.

 $\Rightarrow \le 1/(2B)$  fraction of vertices deleted per phase

 $\Rightarrow \leq B \cdot 1/(2B) = \frac{1}{2}$  fraction of vertices deleted in total





- . clusters at least ½ fraction of vertices
- such that each cluster has weak-diameter O(log<sup>3</sup> n)
  - 3. clusters are non-adjacent

### Property 3:

2





- . clusters at least ½ fraction of vertices
- 2. such that each cluster has weak-diameter  $O(\log^3 n)$ 
  - 3. clusters are non-adjacent

#### Property 3:

At the end of each phase, there are no edges between red and blue nodes.





- 1. clusters at least ½ fraction of vertices
- 2. such that each cluster has weak-diameter O(log<sup>3</sup> n)
  - 3. clusters are non-adjacent

#### Property 3:

At the end of each phase, there are no edges between red and blue nodes.

Otherwise there is a blue cluster of size  $> (1+1/(2B))^{4B \ln n} > n$ .





- . clusters at least ½ fraction of vertices
- 2. such that each cluster has weak-diameter O(log<sup>3</sup> n)
  - 3. clusters are non-adjacent

#### Property 3:

At the end of each phase, there are no edges between red and blue nodes.

Otherwise there is a blue cluster of size  $> (1+1/(2B))^{4B \ln n} > n$ .

After *i*-th phase, clusters in each connected component agree on their *i*-th bit, and this stays so during next phases.



- ✓ 1. clusters at least ½ fraction of vertices
  - 2. such that each cluster has weak-diameter O(log<sup>3</sup> n)
- √ 3. clusters are non-adjacent

#### Property 3:

At the end of each phase, there are no edges between red and blue nodes.

Otherwise there is a blue cluster of size  $> (1+1/(2B))^{4B \ln n} > n$ .

After *i*-th phase, clusters in each connected component agree on their *i*-th bit, and this stays so during next phases.



The running time of the whole algorithm is

$$O(\log^7 n) =$$

O(log *n*)

# of colors of decomposition

· O(log *n*)

# of phases

 $O(\log^2 n)$ 

steps per phase

 $O(\log^3 n)$ 

complexity of one step



The running time of the whole algorithm is

$$O(\log^7 n) =$$

 $O(\log n)$  # of colors of decomposition

 $O(\log n)$  # of phases

 $O(\log^2 n)$  steps per phase

 $O(\log^3 n)$  complexity of one step

The whole algorithm works in the **CONGEST** model (see Section 2.2 in our paper).

## Plan

- More on LOCAL and CONGEST model
- 2. A deterministic algorithm for network decomposition.
  - a. Sequential algorithm
  - b. Distributed algorithm
- 3. Applications
  - a. Derandomization and a bigger picture of the **LOCAL** model

## General derandomization theorem

**Theorem:** [Ghaffari, Harris, Kuhn FOCS'18 + R., Ghaffari STOC'20]

P-LOCAL = P-RLOCAL.

**P-LOCAL:** problems\* solvable by a deterministic poly(log *n*)-round

algorithm in the LOCAL model

**P-RLOCAL:** problems\* solvable by a randomized poly(log *n*)-round

algorithm in the **LOCAL** model

\*problems needs to be locally checkable = if a proposed solution is not correct, at least one node recognises that after looking at its poly(log n)-hop neighbourhood

## General derandomization theorem

**Theorem:** [Ghaffari, Kuhn, Maus STOC'17 + Ghaffari, Harris, Kuhn FOCS'18 + R., Ghaffari STOC'20]

P-LOCAL = P-RLOCAL = P-SLOCAL = P-RSLOCAL.

**P-LOCAL:** problems\* solvable by a deterministic poly(log *n*)-round

algorithm in the LOCAL model

**P-RLOCAL:** problems\* solvable by a randomized poly(log *n*)-round

algorithm in the **LOCAL** model

\*problems needs to be locally checkable = if a proposed solution is not correct, at least one node recognises that after looking at its poly(log n)-hop neighbourhood

Iterate over nodes in arbitrary order.



## SLOCAL - sequential variant of the LOCAL model

Iterate over nodes in adversarial order.

Decide their label based only on their **r**-hop neighbourhood.

Write the label to the node so that other nodes can see it.

**P-SLOCAL:**  $r = \text{poly}(\log n)$ , locally checkable

**P-RSLOCAL:**  $r = \text{poly}(\log n)$ , locally checkable, can use randomness

"deterministic sequential"

### **P-LOCAL**

"deterministic distributed"

### **P-RSLOCAL**

"randomized sequential"

### **P-RLOCAL**

"randomized distributed"

"deterministic sequential"

deterministic network decomposition

[R., Ghaffari STOC'20]

direct

### **P-LOCAL**

"deterministic distributed"

"deterministic sequential"

deterministic network decomposition

[R., Ghaffari STOC'20]



#### P-LOCAL

"deterministic distributed"

*Proof*: for **P-SLOCAL** algorithm with locality r, construct network decomposition on  $G^r$  in  $O(r \log^7 n)$  rounds with  $C = O(\log n)$ ,  $D = O(\log^3 n)$ ; iterate over color classes and simulate the sequential algorithm in  $O(\log n + r \log^3 n)$  rounds.

"deterministic sequential"



direct

#### **P-LOCAL**

"deterministic distributed"

By the way: Network decomposition is a complete problem for this reduction.

"deterministic sequential"





#### **P-LOCAL**

"deterministic distributed"

Corollary: There is an efficient deterministic algorithm for  $\Delta$ +1 coloring, maximal independent set, strong diameter network decomposition

"deterministic sequential"

deterministic network decomposition
[R., Ghaffari STOC'20]



#### **P-LOCAL**

"deterministic distributed"

### **P-RSLOCAL**

"randomized sequential"

randomized network decomposition [Linial, Saks SODA '91] direct

### P-RLOCAL

"randomized distributed"

"deterministic sequential"

deterministic network
decomposition
[R., Ghaffari STOC'20]

#### P-LOCAL

"deterministic distributed"

## conditional expectation\*

[Ghaffari, Harris, Kuhn FOCS'18]



#### **P-RSLOCAL**

"randomized sequential"

direct



#### P-RLOCAL

"randomized distributed"

\* for problems locally checkable in poly(log n) rounds

"deterministic sequential"

deterministic network decomposition [R., Ghaffari STOC'20]

#### **P-LOCAL**

"deterministic distributed"

### conditional expectation\*

[Ghaffari, Harris, Kuhn FOCS'18]





#### P-RSLOCAL

"randomized sequential"

direct



#### P-RLOCAL

"randomized distributed"

Corollary: There is an efficient deterministic algorithm for Lovász local lemma,...



We see a clean first-order theory of the LOCAL model.

## Plan

- More on LOCAL and CONGEST model
- 2. A deterministic algorithm for network decomposition.
  - a. Sequential algorithm
  - b. Distributed algorithm
- 3. Applications
  - a. Derandomization and a bigger picture of the **LOCAL** model
  - b. Δ+1 coloring, MIS, Lovász local lemma

LOCAL, deterministic

LOCAL, randomized

MPC, randomized

## $\Delta$ +1 coloring

LOCAL, deterministic

poly(log n)

LOCAL, randomized

**MPC**, randomized



MPC, randomized

shattering [Chang, Li, Pettie STOC'18]

+ network decomposition [R Ghaffari STOC'20]

## amplification of success probability

[Chang, Kopelowitz, and Pettie FOCS'16]



MPC, randomized

shattering [Chang, Li, Pettie STOC'18]

+ network decomposition [R Ghaffari STOC'20]

## amplification of success probability

[Chang, Kopelowitz, and Pettie FOCS'16]



shattering [Chang, Li, Pettie STOC'18]

+ network decomposition [R Ghaffari STOC'20]

graph exponentiation

[Chang, Fischer, Ghaffari, Uitto, Zheng PODC'19]

amplification of success probability

[Chang, Kopelowitz, and Pettie FOCS'16]

conditioned on hardness of connectivity in MPC [Ghaffari, Kuhn, Uitto FOCS'19]



shattering [Chang, Li, Pettie STOC'18]

+ network decomposition [R Ghaffari STOC'20]

graph exponentiation

[Chang, Fischer, Ghaffari, Uitto, Zheng PODC'19]

# Maximal independent set (MIS)

|                         | Upper bound                                                    | Lower bound                                                                                                                                           |
|-------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCAL,<br>deterministic | O(log <sup>7</sup> n) [R. Ghaffari STOC'20]                    | $\Omega(\log n / \log \log n)$ [Balliu et al. FOCS'19]                                                                                                |
| LOCAL, randomized       | $O(\log \Delta) + \text{poly}(\log \log n)$ [Ghaffari SODA'16] | $\Omega(\log \Delta / \log \log \Delta)$ [Kuhn et al. J.ACM'16] $o(\Delta) + o(\log \log n / \log \log \log n)$ is impossible [Balliu et al. FOCS'19] |

#### Lovász local lemma



# Lovász local lemma ( $p = \Delta^{-10}$ )

|                         | Upper bound                                                                                       | Lower bound                                          |
|-------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|
| LOCAL,<br>deterministic | poly(log <i>n</i> ) [Ghaffari, Harris, Kuhn FOCS'18 + R. Ghaffari STOC'20]                        | $\Omega(\log n)$ [Chang, Kopelowitz, Pettie FOCS'16] |
| LOCAL, randomized       | $O(log^2 n)$ [Moser, Tardos J.ACM'10] $O(\Delta^2) + poly(log log n)$ [Fischer, Ghaffari DISC'17] | Ω(log log n)<br>[Brandt et al., SODA'16]             |

#### Lovász local lemma

Theorem [Chang, Pettie FOCS'17]:

In graphs of degree O(1), problems checkable with locality O(1) have randomized complexity of either  $\Omega(\log n)$  or  $O(T_{III})$ .

Here,  $T_{LLL}$  is the randomized complexity of Lovász local lemma on constant degree graphs.

#### Plan

- More on LOCAL and CONGEST model
- 2. A deterministic algorithm for network decomposition.
  - a. Sequential algorithm
  - b. Distributed algorithm
- 3. Applications
  - a. Derandomization and a bigger picture of the **LOCAL** model
  - b. Δ+1 coloring, MIS, Lovász local lemma
  - c. **CONGEST** model and open problems

#### **CONGEST** model

Recall: In one round, only O(log n) bits of information can be sent through an edge.

#### **CONGEST** model

Recall: In one round, only O(log n) bits of information can be sent through an edge.

In general, we cannot collect the whole topology of a cluster



#### **CONGEST** model

Recall: In one round, only O(log n) bits of information can be sent through an edge.

In general, we cannot collect the whole topology of a cluster

Theorem: [Censor-Hillel, Parter, Schwartzman DISC'17; R. Ghaffari STOC'20]

There is poly(log n)-round CONGEST algorithm for MIS.

**Theorem:** [Bamberger, Kuhn, Maus PODC'20; R. Ghaffari STOC'20]

There is poly(log n)-round **CONGEST** algorithm for  $\Delta$ +1 coloring.



### Open problems

Find deterministic algorithm for MIS,  $\Delta$ +1 coloring, ... in the **LOCAL** model faster than state-of-the-art algorithm for network decomposition.

Find a *combinatorial* deterministic poly(log n)-round algorithm for MIS,  $\Delta$ +1 coloring, ... in the **CONGEST** model.









Big picture of the LOCAL model

