
A Non-Column Tile in Z× R/Z Glued from Two Slopes with

Periodic Supports Neither of Which Tiles Z

Abstract

We work in G = Z× R/Z with counting measure on Z and normalized Lebesgue measure on
R/Z. We answer the following question affirmatively: there exists a tile A ⊂ G which is not a
column and a tiling T ⊂ G such that Z decomposes as a disjoint union Z = X ⊔ Y of periodic
sets, T = T1 ⊔ T2, with

A+ T1 = X × R/Z, A+ T2 = Y × R/Z,

where T1 is (p, 0)-periodic for some p ∈ Z≥2, T2 is (p, pβ)-periodic for some irrational β ∈ [0, 1),
and neither X nor Y tiles Z by finitely many disjoint translates. The construction uses a
three-column tile and two single-coset tilings at slopes α = 0 and α = β glued to prescribed
columns. All equalities and disjointness statements are understood almost everywhere (a.e.)
with respect to the product measure; we use half-open arcs to avoid boundary issues.

1 Setup and the Question

Group and measure. Let G = Z×R/Z with addition (m, θ)+(n, φ) = (m+n, θ+φ mod 1). On Z
we use counting measure and on R/Z normalized Lebesgue measure µ. All unions/coverings/disjointness
are meant a.e.

Tiles and tilings. A tile is a finite union of column slices

A =
ℓ⋃

i=1

{ni} × Ii, ni ∈ Z, Ii ⊂ R/Z half-open intervals.

For α ∈ [0, 1) and c ∈ R/Z we write

Tα,c := {(m,mα+ c) : m ∈ Z} ⊂ G.

Given T ⊂ G, we say that A tiles G with T if A+ T = G a.e. and (A+ t) ∩ (A+ t′) has measure
zero for all distinct t, t′ ∈ T .

Columns. We call A a column if there exist a finite C ⊂ Z and a finite Λ ⊂ R/Z such that
A ⊂ C × R/Z and⋃

λ∈Λ

(
A+ (0, λ)

)
= C × R/Z, (A+ (0, λ)) ∩ (A+ (0, λ′)) has measure 0 for λ ̸= λ′. (1)
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Question. Does there exist a tile A and a tiling T for which we can write Z = X ⊔ Y (disjoint
union), T = T1 ⊔ T2, such that X,Y are periodic,

• A+ T1 = X × R/Z and A+ T2 = Y × R/Z;

• T1 is (ℓ1, 0)-periodic and T2 is (ℓ2, α
′)-periodic for some irrational α′;

• A is not a column;

• and moreover neither X nor Y tiles Z by finitely many disjoint translates?

2 Single-Coset Criterion and Gluing to Prescribed Columns

Lemma 1 (Fiber computation and single-coset criterion). Let A =
⋃ℓ

i=1{ni} × Ii with half-open
Ii ⊂ R/Z and define

S(α) :=
ℓ⋃

i=1

(Ii − niα) ⊂ R/Z.

Then the fiber over r ∈ Z of A+ Tα,c equals c+ rα+ S(α). In particular, A+ Tα,c tiles G a.e. (for
some/every c) iff the translates {Ii − niα} are pairwise a.e. disjoint and S(α) = R/Z a.e.

Proof. Points (ni, θ) ∈ A contribute to the r-th fiber after adding (r − ni, (r − ni)α + c), giving
θ + (r − ni)α+ c. Thus the fiber is c+ rα+

⋃
i(Ii − niα). Disjointness/coverage in a fixed fiber

reduce to the stated conditions; different r give disjoint first coordinates.

Lemma 2 (Restricted-coset gluing). Under the hypothesis of Lemma 1 for a fixed α, let X ⊂ Z
and c ∈ R/Z. Define

TX(α, c) :=

ℓ⋃
i=1

{(m,mα+ c) : m ∈ X − ni}.

Then A+TX(α, c) = X ×R/Z a.e., with fiberwise a.e. disjointness. If X is p-periodic, then TX(α, c)
is (p, pα)-periodic.

Proof. Fix r ∈ Z. A translate from TX(α, c) contributes to the r-th fiber iff r = ni+m for some i with
m ∈ X − ni, i.e. iff r ∈ X. If r /∈ X, the fiber is empty; if r ∈ X it equals c+ rα+ S(α) = R/Z a.e.,
and disjointness holds by Lemma 1. Periodicity is immediate from m ∈ X−ni ⇒ m+p ∈ X−ni.

Lemma 3 (Column obstruction). Suppose A ⊂ C × R/Z with C finite and there exists finite
Λ ⊂ R/Z such that (1) holds with pairwise a.e. disjoint translates. Let Ak := {θ : (k, θ) ∈ A}. Then
µ(Ak) = 1/|Λ| for all k ∈ C. In particular, if two nonempty slices Ak have different measures, A is
not a column.

Proof. For a.e. θ,
∑

λ∈Λ 1Ak
(θ − λ) = 1. Integrate and use translation invariance.

3 Arithmetic Obstructions to Tiling Z by Finitely Many Translates

Lemma 4 (Density obstruction). Let E ⊂ Z and F ⊂ Z be finite such that {E + f : f ∈ F} are
pairwise disjoint and

⋃
f∈F (E + f) = Z. Then the natural density d(E) exists and equals 1/|F |.
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Proof. For N ∈ Z≥0,

2N + 1 =
∑
f∈F

|(E + f) ∩ [−N,N ]|.

Divide by 2N + 1. For each fixed f , the difference between the normalized counts of E and E + f
tends to zero as N → ∞, hence

∑
f∈F dN (E + f) → |F | · lim dN (E) = 1.

Lemma 5 (Finite cyclic obstruction for periodic sets). Let q ≥ 2 and E ⊂ Z be q-periodic with
residue set R ⊂ Z/qZ of size a = |R|. If there exists finite F ⊂ Z such that {E + f : f ∈ F} are
pairwise disjoint and

⋃
f∈F (E + f) = Z, then the residues F (mod q) are all distinct and a · |F | = q.

In particular a | q.

Proof. Reduce the tiling to Z/qZ. For each r ∈ Z/qZ there is a unique pair (e, f) ∈ R× (F mod q)
with e+ f ≡ r, whence q = |R| · |F (mod q)|. For fixed e, f 7→ e+ f is injective modulo q, so the
residues of F are distinct and |F (mod q)| = |F |, giving a|F | = q.

Corollary 1 (Prime case and complements). If q = p is prime and E ⊂ Z is p-periodic with |R| = a,
then E tiles Z by finitely many disjoint translates iff a ∈ {1, p}. In particular, for 1 < a < p− 1,
neither E nor its complement tiles Z.

Proof. Apply Lemma 5 to E and to its complement (with residue size p− a).

4 Periodicity of Coset-Slope Sets and Disjointization

Lemma 6 (Periodicity vector). Let T = {(m,mα + c) : m ∈ M} ⊂ G. If T is invariant under
addition of (ℓ, γ), then M is ℓ-periodic and γ ≡ ℓα (mod 1). Conversely, if these hold then
T + (ℓ, γ) = T .

Proof. Invariance gives (m+ ℓ, (m+ ℓ)α+ c+ γ) = (m′,m′α+ c) ∈ T for some m′ ∈ M . Comparing
first coordinates forces m′ = m+ ℓ and then (m+ ℓ)α+ c+ γ ≡ mα+ c, i.e. γ ≡ −ℓα ≡ ℓα (mod 1).
The converse is immediate.

Lemma 7 (Disjointizing the constants). Let β be irrational, X,Y ⊂ Z, and define

T1 :=

ℓ⋃
i=1

{(m, c1) : m ∈ X − ni}, T2 :=
ℓ⋃

i=1

{(m,mβ + c2) : m ∈ Y − ni}.

There exists c1 ∈ R/Z such that T1 ∩ T2 = ∅.

Proof. If (m, c1) ∈ T1 ∩ T2 then m ∈
(
∪i(X − ni)

)
∩
(
∪i(Y − ni)

)
and c1 ≡ mβ + c2 (mod 1). The

set of forbidden c1 is countable, hence avoidable.

5 A Three-Column Tile for Two Slopes and Non-Columnness

Proposition 1 (Three-column single-coset tile for α = 0 and α = β). Let β ∈ [0, 1) be irrational.
Then there exists a three-column tile

A = {n1} × I1 ∪ {n2} × I2 ∪ {n3} × I3

such that the single-coset criterion (Lemma 1) holds both for α = 0 and for α = β. Moreover, the
slice measures µ(I1), µ(I2), µ(I3) are not all equal, hence A is not a column by Lemma 3.
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Proof. Choose distinct t1, t2, t3 ∈ Z with distinct fractional parts bi = {tiβ}, relabeled so that
0 ≤ b1 < b2 < b3 < 1. Set lengths L1 := b2 − b1, L2 := b3 − b2, L3 := 1 − (b3 − b1) (positive
and summing to 1). Let n1 := 0, n2 := t1 − t3, n3 := t2 − t3 and define ai := bi + niβ (mod 1),
Ii := [ai, ai + Li).

For α = β one has Ii − niβ = [bi, bi + Li), the three consecutive arcs [b1, b2), [b2, b3), [b3, b1),
which partition R/Z a.e.

For α = 0, write tiβ = qi + bi with qi ∈ Z. Then modulo 1,

a1 ≡ b1, a3 ≡ b2, a2 ≡ b1 − (b3 − b2).

It follows that the cyclic gaps between a1, a3, a2 are L1, L3, L2, hence I1, I2, I3 are pairwise disjoint
with total length 1, i.e. they cover R/Z a.e.

Finally, L1 = {(t2−t1)β} and L2 = {(t3−t2)β} are irrational; if L1 = L2 then L3 = 1−2L1 ̸= L1

(else L1 = 1/3 rational). Thus the slice measures are not all equal, and Lemma 3 implies A is not a
column.

6 Main Theorem: Gluing on Complementary Periodic Supports
that Do Not Tile

Theorem 1 (Affirmative answer with non-tiling X,Y ). Let β ∈ [0, 1) be irrational and let p be
prime. Choose a residue set R ⊂ Z/pZ with 1 < |R| < p− 1 and define

X := {n ∈ Z : n mod p ∈ R}, Y := Z \X.

Then there exist a tile A ⊂ G which is not a column and disjoint translation sets T1, T2 ⊂ G such
that, writing T := T1 ⊔ T2,

(i) A+ T1 = X × R/Z and A+ T2 = Y × R/Z a.e., hence A+ T = Z× R/Z a.e.;

(ii) T1 is (p, 0)-periodic and T2 is (p, pβ)-periodic;

(iii) neither X nor Y tiles Z by finitely many disjoint translates.

Proof. Let A be the three-column tile from Proposition 1. Apply Lemma 2 with α = 0 and the
p-periodic set X to obtain T1 := TX(0, c1) satisfying A + T1 = X × R/Z a.e.; similarly, apply
Lemma 2 with α = β and Y to obtain T2 := TY (β, c2) satisfying A + T2 = Y × R/Z a.e. Since
X ⊔ Y = Z, the two coverings are over disjoint columns, hence A+ (T1 ∪ T2) = Z× R/Z a.e. By
Lemma 7, we may choose c1 so that T1 ∩ T2 = ∅, i.e. T = T1 ⊔ T2.

Periodicity follows from Lemma 6: X and Y are p-periodic, so T1 is (p, 0)-periodic and T2 is
(p, pβ)-periodic. Finally, by Corollary 1 (applied to |R| and to p− |R|), neither X nor Y tiles Z by
finitely many disjoint translates.

Remark 1 (Two columns are impossible for dual slopes). Let A = {n1} × I1 ∪ {n2} × I2 with
half-open intervals I1, I2 ⊂ R/Z. If {I1, I2} is a.e. disjoint with union R/Z and, for some irrational
β, also {I1−n1β, I2−n2β} is a.e. disjoint with union R/Z, then necessarily n1 = n2. In particular,
a two-column tile cannot simultaneously satisfy the single-coset criterion for α = 0 and α = β.

Proof sketch. From α = 0 we have I2 = R/Z \ I1 a.e. From α = β, I2 − n2β = R/Z \ (I1 − n1β)
a.e., hence I1 = I1 − (n1 − n2)β a.e., which forces (n1 − n2)β ≡ 0 (mod 1). Since β is irrational,
n1 = n2.
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Remark 2 (Explicit instance). Take β =
√
2/12, p = 5, and R = {0, 1}. Then X = {n ≡

0, 1 (mod 5)} and Y = Z \X. Choose t1 = 0, t2 = 1, t3 = 3; then b1 = 0, b2 = β, b3 = 3β, giving
lengths L1 = β, L2 = 2β, L3 = 1− 3β, and columns n1 = 0, n2 = −3, n3 = −2. Proposition 1 and
Theorem 1 apply verbatim.

Conclusion

We constructed a non-column tile A admitting two single-coset tilings at slopes 0 and an irrational
β, glued onto complementary periodic supports X and Y of common period p, such that neither X
nor Y tiles Z by finitely many translates. This gives an affirmative answer to the stated question
and strictly strengthens the example obtainable by “gluing in 2Z” from the original paper.
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