A Non-Column Tile in $\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ Glued from Two Slopes with Periodic Supports Neither of Which Tiles \mathbb{Z}

Abstract

We work in $G = \mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ with counting measure on \mathbb{Z} and normalized Lebesgue measure on \mathbb{R}/\mathbb{Z} . We answer the following question affirmatively: there exists a tile $A \subset G$ which is not a column and a tiling $T \subset G$ such that \mathbb{Z} decomposes as a disjoint union $\mathbb{Z} = X \sqcup Y$ of periodic sets, $T = T_1 \sqcup T_2$, with

$$A + T_1 = X \times \mathbb{R}/\mathbb{Z}, \qquad A + T_2 = Y \times \mathbb{R}/\mathbb{Z},$$

where T_1 is (p,0)-periodic for some $p \in \mathbb{Z}_{\geq 2}$, T_2 is $(p,p\beta)$ -periodic for some irrational $\beta \in [0,1)$, and neither X nor Y tiles \mathbb{Z} by finitely many disjoint translates. The construction uses a three-column tile and two single-coset tilings at slopes $\alpha = 0$ and $\alpha = \beta$ glued to prescribed columns. All equalities and disjointness statements are understood almost everywhere (a.e.) with respect to the product measure; we use half-open arcs to avoid boundary issues.

1 Setup and the Question

Group and measure. Let $G = \mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ with addition $(m, \theta) + (n, \varphi) = (m+n, \theta+\varphi \mod 1)$. On \mathbb{Z} we use counting measure and on \mathbb{R}/\mathbb{Z} normalized Lebesgue measure μ . All unions/coverings/disjointness are meant a.e.

Tiles and tilings. A tile is a finite union of column slices

$$A = \bigcup_{i=1}^{\ell} \{n_i\} \times I_i, \qquad n_i \in \mathbb{Z}, \ I_i \subset \mathbb{R}/\mathbb{Z} \ \text{half-open intervals.}$$

For $\alpha \in [0,1)$ and $c \in \mathbb{R}/\mathbb{Z}$ we write

$$T_{\alpha,c} := \{(m, m\alpha + c) : m \in \mathbb{Z}\} \subset G.$$

Given $T \subset G$, we say that A tiles G with T if A + T = G a.e. and $(A + t) \cap (A + t')$ has measure zero for all distinct $t, t' \in T$.

Columns. We call A a *column* if there exist a finite $C \subset \mathbb{Z}$ and a finite $\Lambda \subset \mathbb{R}/\mathbb{Z}$ such that $A \subset C \times \mathbb{R}/\mathbb{Z}$ and

$$\bigcup_{\lambda \in \Lambda} (A + (0, \lambda)) = C \times \mathbb{R}/\mathbb{Z}, \qquad (A + (0, \lambda)) \cap (A + (0, \lambda')) \text{ has measure 0 for } \lambda \neq \lambda'. \tag{1}$$

Question. Does there exist a tile A and a tiling T for which we can write $\mathbb{Z} = X \sqcup Y$ (disjoint union), $T = T_1 \sqcup T_2$, such that X, Y are periodic,

- $A + T_1 = X \times \mathbb{R}/\mathbb{Z}$ and $A + T_2 = Y \times \mathbb{R}/\mathbb{Z}$;
- T_1 is $(\ell_1, 0)$ -periodic and T_2 is (ℓ_2, α') -periodic for some irrational α' ;
- A is not a column;
- and moreover neither X nor Y tiles \mathbb{Z} by finitely many disjoint translates?

2 Single-Coset Criterion and Gluing to Prescribed Columns

Lemma 1 (Fiber computation and single-coset criterion). Let $A = \bigcup_{i=1}^{\ell} \{n_i\} \times I_i$ with half-open $I_i \subset \mathbb{R}/\mathbb{Z}$ and define

$$S(\alpha) := \bigcup_{i=1}^{\ell} (I_i - n_i \alpha) \subset \mathbb{R}/\mathbb{Z}.$$

Then the fiber over $r \in \mathbb{Z}$ of $A + T_{\alpha,c}$ equals $c + r\alpha + S(\alpha)$. In particular, $A + T_{\alpha,c}$ tiles G a.e. (for some/every c) iff the translates $\{I_i - n_i\alpha\}$ are pairwise a.e. disjoint and $S(\alpha) = \mathbb{R}/\mathbb{Z}$ a.e.

Proof. Points $(n_i, \theta) \in A$ contribute to the r-th fiber after adding $(r - n_i, (r - n_i)\alpha + c)$, giving $\theta + (r - n_i)\alpha + c$. Thus the fiber is $c + r\alpha + \bigcup_i (I_i - n_i\alpha)$. Disjointness/coverage in a fixed fiber reduce to the stated conditions; different r give disjoint first coordinates.

Lemma 2 (Restricted-coset gluing). Under the hypothesis of Lemma 1 for a fixed α , let $X \subset \mathbb{Z}$ and $c \in \mathbb{R}/\mathbb{Z}$. Define

$$T_X(\alpha, c) := \bigcup_{i=1}^{\ell} \{ (m, m\alpha + c) : m \in X - n_i \}.$$

Then $A + T_X(\alpha, c) = X \times \mathbb{R}/\mathbb{Z}$ a.e., with fiberwise a.e. disjointness. If X is p-periodic, then $T_X(\alpha, c)$ is $(p, p\alpha)$ -periodic.

Proof. Fix $r \in \mathbb{Z}$. A translate from $T_X(\alpha, c)$ contributes to the r-th fiber iff $r = n_i + m$ for some i with $m \in X - n_i$, i.e. iff $r \notin X$. If $r \notin X$, the fiber is empty; if $r \in X$ it equals $c + r\alpha + S(\alpha) = \mathbb{R}/\mathbb{Z}$ a.e., and disjointness holds by Lemma 1. Periodicity is immediate from $m \in X - n_i \Rightarrow m + p \in X - n_i$. \square

Lemma 3 (Column obstruction). Suppose $A \subset C \times \mathbb{R}/\mathbb{Z}$ with C finite and there exists finite $\Lambda \subset \mathbb{R}/\mathbb{Z}$ such that (1) holds with pairwise a.e. disjoint translates. Let $A_k := \{\theta : (k, \theta) \in A\}$. Then $\mu(A_k) = 1/|\Lambda|$ for all $k \in C$. In particular, if two nonempty slices A_k have different measures, A is not a column.

Proof. For a.e. θ , $\sum_{\lambda \in \Lambda} \mathbf{1}_{A_k}(\theta - \lambda) = 1$. Integrate and use translation invariance.

3 Arithmetic Obstructions to Tiling $\mathbb Z$ by Finitely Many Translates

Lemma 4 (Density obstruction). Let $E \subset \mathbb{Z}$ and $F \subset \mathbb{Z}$ be finite such that $\{E + f : f \in F\}$ are pairwise disjoint and $\bigcup_{f \in F} (E + f) = \mathbb{Z}$. Then the natural density d(E) exists and equals 1/|F|.

Proof. For $N \in \mathbb{Z}_{>0}$,

$$2N + 1 = \sum_{f \in F} |(E + f) \cap [-N, N]|.$$

Divide by 2N+1. For each fixed f, the difference between the normalized counts of E and E+f tends to zero as $N\to\infty$, hence $\sum_{f\in F}d_N(E+f)\to |F|\cdot \lim d_N(E)=1$.

Lemma 5 (Finite cyclic obstruction for periodic sets). Let $q \geq 2$ and $E \subset \mathbb{Z}$ be q-periodic with residue set $R \subset \mathbb{Z}/q\mathbb{Z}$ of size a = |R|. If there exists finite $F \subset \mathbb{Z}$ such that $\{E + f : f \in F\}$ are pairwise disjoint and $\bigcup_{f \in F} (E + f) = \mathbb{Z}$, then the residues $F \pmod{q}$ are all distinct and $a \cdot |F| = q$. In particular $a \mid q$.

Proof. Reduce the tiling to $\mathbb{Z}/q\mathbb{Z}$. For each $r \in \mathbb{Z}/q\mathbb{Z}$ there is a unique pair $(e, f) \in R \times (F \mod q)$ with $e + f \equiv r$, whence $q = |R| \cdot |F \pmod q|$. For fixed $e, f \mapsto e + f$ is injective modulo q, so the residues of F are distinct and $|F \pmod q| = |F|$, giving a|F| = q.

Corollary 1 (Prime case and complements). If q = p is prime and $E \subset \mathbb{Z}$ is p-periodic with |R| = a, then E tiles \mathbb{Z} by finitely many disjoint translates iff $a \in \{1, p\}$. In particular, for 1 < a < p - 1, neither E nor its complement tiles \mathbb{Z} .

Proof. Apply Lemma 5 to E and to its complement (with residue size p-a).

4 Periodicity of Coset-Slope Sets and Disjointization

Lemma 6 (Periodicity vector). Let $T = \{(m, m\alpha + c) : m \in M\} \subset G$. If T is invariant under addition of (ℓ, γ) , then M is ℓ -periodic and $\gamma \equiv \ell\alpha \pmod{1}$. Conversely, if these hold then $T + (\ell, \gamma) = T$.

Proof. Invariance gives $(m+\ell,(m+\ell)\alpha+c+\gamma)=(m',m'\alpha+c)\in T$ for some $m'\in M$. Comparing first coordinates forces $m'=m+\ell$ and then $(m+\ell)\alpha+c+\gamma\equiv m\alpha+c$, i.e. $\gamma\equiv -\ell\alpha\equiv \ell\alpha\pmod 1$. The converse is immediate.

Lemma 7 (Disjointizing the constants). Let β be irrational, $X, Y \subset \mathbb{Z}$, and define

$$T_1 := \bigcup_{i=1}^{\ell} \{(m, c_1) : m \in X - n_i\}, \qquad T_2 := \bigcup_{i=1}^{\ell} \{(m, m\beta + c_2) : m \in Y - n_i\}.$$

There exists $c_1 \in \mathbb{R}/\mathbb{Z}$ such that $T_1 \cap T_2 = \emptyset$.

Proof. If $(m, c_1) \in T_1 \cap T_2$ then $m \in (\bigcup_i (X - n_i)) \cap (\bigcup_i (Y - n_i))$ and $c_1 \equiv m\beta + c_2 \pmod{1}$. The set of forbidden c_1 is countable, hence avoidable.

5 A Three-Column Tile for Two Slopes and Non-Columnness

Proposition 1 (Three-column single-coset tile for $\alpha = 0$ and $\alpha = \beta$). Let $\beta \in [0, 1)$ be irrational. Then there exists a three-column tile

$$A = \{n_1\} \times I_1 \ \cup \ \{n_2\} \times I_2 \ \cup \ \{n_3\} \times I_3$$

such that the single-coset criterion (Lemma 1) holds both for $\alpha = 0$ and for $\alpha = \beta$. Moreover, the slice measures $\mu(I_1), \mu(I_2), \mu(I_3)$ are not all equal, hence A is not a column by Lemma 3.

Proof. Choose distinct $t_1, t_2, t_3 \in \mathbb{Z}$ with distinct fractional parts $b_i = \{t_i\beta\}$, relabeled so that $0 \le b_1 < b_2 < b_3 < 1$. Set lengths $L_1 := b_2 - b_1$, $L_2 := b_3 - b_2$, $L_3 := 1 - (b_3 - b_1)$ (positive and summing to 1). Let $n_1 := 0$, $n_2 := t_1 - t_3$, $n_3 := t_2 - t_3$ and define $a_i := b_i + n_i\beta$ (mod 1), $I_i := [a_i, a_i + L_i)$.

For $\alpha = \beta$ one has $I_i - n_i\beta = [b_i, b_i + L_i)$, the three consecutive arcs $[b_1, b_2)$, $[b_2, b_3)$, $[b_3, b_1)$, which partition \mathbb{R}/\mathbb{Z} a.e.

For $\alpha = 0$, write $t_i \beta = q_i + b_i$ with $q_i \in \mathbb{Z}$. Then modulo 1,

$$a_1 \equiv b_1, \qquad a_3 \equiv b_2, \qquad a_2 \equiv b_1 - (b_3 - b_2).$$

It follows that the cyclic gaps between a_1, a_3, a_2 are L_1, L_3, L_2 , hence I_1, I_2, I_3 are pairwise disjoint with total length 1, i.e. they cover \mathbb{R}/\mathbb{Z} a.e.

Finally, $L_1 = \{(t_2 - t_1)\beta\}$ and $L_2 = \{(t_3 - t_2)\beta\}$ are irrational; if $L_1 = L_2$ then $L_3 = 1 - 2L_1 \neq L_1$ (else $L_1 = 1/3$ rational). Thus the slice measures are not all equal, and Lemma 3 implies A is not a column.

6 Main Theorem: Gluing on Complementary Periodic Supports that Do Not Tile

Theorem 1 (Affirmative answer with non-tiling X,Y). Let $\beta \in [0,1)$ be irrational and let p be prime. Choose a residue set $R \subset \mathbb{Z}/p\mathbb{Z}$ with 1 < |R| < p-1 and define

$$X := \{ n \in \mathbb{Z} : n \mod p \in R \}, \qquad Y := \mathbb{Z} \setminus X.$$

Then there exist a tile $A \subset G$ which is not a column and disjoint translation sets $T_1, T_2 \subset G$ such that, writing $T := T_1 \sqcup T_2$,

- (i) $A + T_1 = X \times \mathbb{R}/\mathbb{Z}$ and $A + T_2 = Y \times \mathbb{R}/\mathbb{Z}$ a.e., hence $A + T = \mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ a.e.;
- (ii) T_1 is (p,0)-periodic and T_2 is $(p,p\beta)$ -periodic;
- (iii) neither X nor Y tiles \mathbb{Z} by finitely many disjoint translates.

Proof. Let A be the three-column tile from Proposition 1. Apply Lemma 2 with $\alpha = 0$ and the p-periodic set X to obtain $T_1 := T_X(0, c_1)$ satisfying $A + T_1 = X \times \mathbb{R}/\mathbb{Z}$ a.e.; similarly, apply Lemma 2 with $\alpha = \beta$ and Y to obtain $T_2 := T_Y(\beta, c_2)$ satisfying $A + T_2 = Y \times \mathbb{R}/\mathbb{Z}$ a.e. Since $X \sqcup Y = \mathbb{Z}$, the two coverings are over disjoint columns, hence $A + (T_1 \cup T_2) = \mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ a.e. By Lemma 7, we may choose c_1 so that $T_1 \cap T_2 = \emptyset$, i.e. $T = T_1 \sqcup T_2$.

Periodicity follows from Lemma 6: X and Y are p-periodic, so T_1 is (p,0)-periodic and T_2 is $(p,p\beta)$ -periodic. Finally, by Corollary 1 (applied to |R| and to p-|R|), neither X nor Y tiles \mathbb{Z} by finitely many disjoint translates.

Remark 1 (Two columns are impossible for dual slopes). Let $A = \{n_1\} \times I_1 \cup \{n_2\} \times I_2$ with half-open intervals $I_1, I_2 \subset \mathbb{R}/\mathbb{Z}$. If $\{I_1, I_2\}$ is a.e. disjoint with union \mathbb{R}/\mathbb{Z} and, for some irrational β , also $\{I_1 - n_1\beta, I_2 - n_2\beta\}$ is a.e. disjoint with union \mathbb{R}/\mathbb{Z} , then necessarily $n_1 = n_2$. In particular, a two-column tile cannot simultaneously satisfy the single-coset criterion for $\alpha = 0$ and $\alpha = \beta$.

Proof sketch. From $\alpha = 0$ we have $I_2 = \mathbb{R}/\mathbb{Z} \setminus I_1$ a.e. From $\alpha = \beta$, $I_2 - n_2\beta = \mathbb{R}/\mathbb{Z} \setminus (I_1 - n_1\beta)$ a.e., hence $I_1 = I_1 - (n_1 - n_2)\beta$ a.e., which forces $(n_1 - n_2)\beta \equiv 0 \pmod{1}$. Since β is irrational, $n_1 = n_2$.

Remark 2 (Explicit instance). Take $\beta = \sqrt{2}/12$, p = 5, and $R = \{0,1\}$. Then $X = \{n \equiv 0, 1 \pmod{5}\}$ and $Y = \mathbb{Z} \setminus X$. Choose $t_1 = 0$, $t_2 = 1$, $t_3 = 3$; then $t_1 = 0$, $t_2 = \beta$, $t_3 = 3\beta$, giving lengths $t_1 = \beta$, $t_2 = 2\beta$, $t_3 = 1 - 3\beta$, and columns $t_1 = 0$, $t_2 = -3$, $t_3 = -2$. Proposition 1 and Theorem 1 apply verbatim.

Conclusion

We constructed a non-column tile A admitting two single-coset tilings at slopes 0 and an irrational β , glued onto complementary periodic supports X and Y of common period p, such that neither X nor Y tiles \mathbb{Z} by finitely many translates. This gives an affirmative answer to the stated question and strictly strengthens the example obtainable by "gluing in $2\mathbb{Z}$ " from the original paper.