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Abstract

In the thesis we settle a major question from the area of distributed
graph algorithms by providing a polylogarithmic-time deterministic
algorithm for the network decomposition problem.

This leads to the first efficient deterministic algorithm for many other
central problems in the area, which resolve several decades-old and
well-known open questions. More generally, it leads to a general dis-
tributed derandomization theorem, which, informally, implies that for the
standard first-order interpretation of efficiency as polylogarithmic-time,
distributed graph algorithms do not need randomness for efficiency.
On the other hand, this result yields even faster randomized algorithms
for a number of well-studied problems.

The thesis is based on a joint work with my advisor Prof. Mohsen
Ghaffari.
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Chapter 1

Introduction

In the last few decades we are experiencing an extraordinary success of
distributed systems. The Internet, multi-core processors, blockchain, and
telephone networks are just few out of many distributed systems that we
are using. But so is our brain and even an ant colony can be modelled as a
distributed system.

The common theme for above examples is that many processors or other
entities (we will call them nodes) are active at the same moment. The nodes
usually seek to achieve a common goal, yet to do so, they need to overcome
many obstacles. Let us present some of them on the example of routers –
devices that send messages (called packets) through the Internet.

1. locality: Each router is connected only to several neighbouring routers.
The routed packet, however, may be directed to a far away node in
the network. How should the routers use their local information to
achieve such a global task?

2. communication: The connections between nodes in the Internet have
limited bandwidth. How do we minimize the communication between
the routers?

3. computational cost: Due to the immense use of the Internet, algorithms
run in routers need to be very fast, otherwise the routers are quickly
overflown by incoming packets. How can we design highly scalable
algorithms in such distributed setting?

4. asynchrony: In highly distributed environment, it is hard to predict the
speed of different connections, or even agree on common time. How
do we build scalable systems that are decentralised in such a strong
way?

5. fault-tolerance: Every now and then, a device stops working or misbe-
haves. How do we build robust systems that are immune to failures?
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1. Introduction

6. dynamic environment: Even more, the network itself rapidly changes its
shape as new computers are being connected or disconnected to the
Internet. How do we cope with this rapidly changing environment?

7. security: All messages are sent publicly through the Internet. How do
we achieve that other people cannot read our conversations?

Since there are that many issues to be considered, it is common to define
a distributed model of computation that enables us to focus on just a few
of these issues. In this thesis, we also take this approach and focus on the,
perhaps simplest, synchronous message-passing model of computation that
is adopted to understand arguably the most fundamental from the above
issues: locality. That is, how can we solve a global problem, when each
node has only a local information? The model we use is formally defined
in the next chapter; intuitively, in the model nodes work together in syn-
chronous rounds and in each round they can communicate only with their
direct neighbours.

To give an example of a typical problem that one studies in the adopted
model, note that wifi routers need to communicate between each other to
agree on channels that each router uses to communicate with user devices.
If two routers are spatially close, they should better use different channels
to communicate with devices, otherwise the communication handled by one
router interferes with the communication handled by the other one. We are
facing a global problem of assigning channels to nodes in such a way that
close nodes do not share the same channel. But in the language of discrete
mathematics, we ask for nothing else than a distributed algorithm for so-
called graph coloring – arguably the most notorious problem from the area
of graph theory!

Since this problem is also notoriously hard[32], its variant that is usually
studied in the distributed setting is the so-called (∆ + 1)-coloring[6], where
we assume that for each node the number of available channels is always
higher than the number of neighbouring nodes. In the distributed setting it
is usual to call an algorithm (first-order) efficient if the number of communi-
cation rounds needed to solve the given problem scales polylogarithmically
with the number of nodes of the underlying network. While efficient ran-
domized algorithms for (∆ + 1)-coloring (and many other problems) have
been known since the 1980s[31], the deterministic solution of the problem
eluded us so far. As a highlight of our work, we provide the first efficient de-
terministic algorithm solving the (∆ + 1)-coloring problem (and many other
problems). Rather surprisingly, via known connections[10] this result im-
plies the first randomized algorithm solving the (∆ + 1)-coloring problem
even exponentially faster!

2



Roadmap The main technical novelty presented in this thesis is a simple
efficient deterministic algorithm for the network decomposition problem. In
Chapter 2, we explain the necessary background behind the used model
of distributed computing and state Theorem 2.1, the main corollary of our
algorithm. Roughly speaking, this result states that for the design of efficient
algorithms, one does not need randomness. In Chapter 3, we discuss the
main implications of this result, including the already mentioned example of
(∆ + 1)-coloring. Finally, in Chapter 4 we explain our algorithm for network
decomposition.
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Chapter 2

Background and State of the Art

In this chapter, we first describe the standard message-passing model of
distributed computing called LOCAL [27, 28] and its variant called CONGEST
[36]. Then, we review the state of the art knowledge prior to this work and
explain our contribution.

Model In the LOCAL model of distributed computing, we design an algo-
rithm for n processors, some of which may communicate together. This
communication network is abstracted as an n-node graph G = (V, E), with
one processor on each node v ∈ V. We assume that each node possesses a
unique Θ(log n)-bit identifier.

Communication happens in synchronous rounds, where per round each
node can send one message, of potentially unbounded size, to each neigh-
bor. In the CONGEST variant of the model, each message can have O(log n)
bits. At the beginning, each processor knows only its neighbors, and some
estimates of global parameters, e.g., a polynomial upper bound on n. At the
end, each processor should know its own part of the output, e.g., its color
in the vertex coloring problem.

The time complexity of an algorithm is measured by the number of rounds
it runs.

State of the Art Prior to this work, the state of the art in distributed graph
algorithms exhibited a significant (often nearly-exponential) gap between
randomized and deterministic distributed algorithms. This gap constituted
one of the foundational and long-standing questions in distributed algo-
rithms. A well-known special case is an open question of Linial[27, 28]
about the maximal independent set (MIS) problem:

“can it [MIS] always be found [deterministically] in polylogarithmic time?”

5



2. Background and State of the Art

This has been described as “probably the most outstanding open problem
in the area”[6, Open Problem 11.2]. Prior to our work, the best known

deterministic algorithm had a round complexity of 2O(
√

log n), by Panconesi
and Srinivasan[35]. This should be contrasted with the beautiful O(log n)-
time randomized algorithms of Luby[31] and Alon, Babai, and Itai[1].

There is an abundance of similar open questions about obtaining polylogarithmic-
time deterministic algorithms for other graph problems that admit polylogarithmic-
time randomized algorithms; this includes (∆ + 1)-coloring mentioned in
Chapter 1, Lovász Local Lemma, defective colorings, hypergraph matching,
sparse neighborhood covers, etc. Indeed, in the Conclusion and Open Prob-
lems chapter of their 2013 book, Barenboim and Elkin[6, Chapter 11] write:

“Perhaps the most fundamental open problem in this field is to un-
derstand the power and limitations of randomization.”

They then continue to ask for a general derandomization technique:

Open Problem 11.1 Develop a general derandomization technique
for the distributed message-passing model.

This generic open problem is followed by 16 concrete open problems, 7 of
which ask for polylogarithmic-time (sometimes just called efficient) deter-
ministic algorithms for various graphs problems that are known to admit
efficient randomized algorithms. We note that a few of these concrete open
problems were well-known, and they had been mentioned throughout the
literature since the 1990s.

Our Contribution In this theses, we answer all the concrete questions men-
tioned above by providing the first polylogarithmic-time deterministic algo-
rithms for them. In fact, we show a more general distributed derandomiza-
tion theorem, which proves the following:

Theorem 2.1 (LOCAL Derandomization Theorem) We have

P-LOCAL = P-RLOCAL.

Here, P-LOCAL denotes the family of locally checkable problems1 that can be
solved by deterministic algorithms in poly(log n) rounds of the LOCAL model in

1To make our derandomization theorem stronger and more widely applicable, we use
a relaxed version of local checkability: we call a problem locally checkable if its solution can
be checked deterministically in poly(log n) rounds, such that if the solution is incorrect, at
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n-node graphs and P-RLOCAL denotes the family of locally checkable problems that
can be solved by randomized algorithms in poly(log n) rounds of the LOCAL model,
with success probability 1− 1/n.

Informally, if we follow the standard of viewing a poly(log n)-round algo-
rithm as efficient2 (see e.g.[6, 28, 35]), Theorem 2.1 tells us that distributed
algorithms in the LOCAL model do not need randomness for efficiency. This
holds for any locally checkable problem, i.e., any problem for which the solu-
tion can be checked efficiently deterministically3.

At the heart of our derandomization result, and as the main novelty of this
work, we provide the first poly(log n)-round deterministic algorithm for net-
work decomposition. Roughly speaking, network decomposition is a partition-
ing of a graph into classes, such that each connected component of each
class has small diameter.

Theorem 2.2 (Network Decomposition Algorithm) There is a deterministic dis-
tributed algorithm that in any n-node network G = (V, E), in poly(log n) rounds
of the LOCAL model, partitions the vertices into O(log n) disjoint color classes V1,
. . . , VO(log n), such that in the subgraph G[Vi] induced by the vertices of each color
i, each connected component has diameter O(log n).

We prove Theorem 2.2 in Chapter 4. We note that prior to our work, the
best known deterministic network decomposition had a round complexity of

2O
(√

log n
)
, due to a celebrated work of Panconesi and Srinivasan[35]. This it-

self was an improvement on a 2O
(√

log n log log n
)
-round distributed algorithm,

presented by Awerbuch et al.[3], in their pioneering work that defined net-
work decomposition and showed its applications for distributed graph algo-
rithms.

Our derandomization result stated in Theorem 2.1 follows immediately by
putting our new network decomposition, as stated in Theorem 2.2, together
with the derandomization framework developed by Ghaffari, Harris, and
Kuhn [19] and Ghaffari, Kuhn, and Maus[20].

least one node knows. Thus, each constraint of the problem spans a neighborhood of at most
poly(log n) rounds. Notice that this readily includes problems such as MIS, coloring, etc. For
a precise definition of locally checkable problems (but bounded to constant radius), we refer
to [34].

2This is similar to viewing a centralized algorithm with poly(n) time complexity or a
parallel (PRAM model) algorithm with poly(log n) time complexity as efficient.

3This is not a limiting restriction, in that essentially all the problems studied in the
LOCAL model throughout the literature are locally checkable. Moreover, such a restriction to
locally checkable problems is necessary and the statement cannot hold for arbitrary problems,
for trivial reasons: e.g., marking arbitrary Θ(

√
n) nodes can be done in zero rounds by

randomized algorithms but can be shown to require Ω(
√

n) rounds for any deterministic
algorithm.
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2. Background and State of the Art

Implications Through known connections, this derandomization leads to
better deterministic and randomized distributed algorithms for a long list of
well-studied problems which we overview in Chapter 3. A sampling of
the end-results includes (I) poly(log n)-round deterministic algorithms for
maximal independent set, ∆ + 1 coloring, the Lovász Local Lemma, and
defective coloring, as well as (II) a poly(log log n)-time randomized ∆ + 1
coloring [10], a poly(log log n)-time randomized algorithm for Lovász Local
Lemma in constant degree graphs [19], and an automatic complexity speed-
up theorem from o(log n) to poly(log log n) in constant-degree graphs, for
any problem whose solution can be checked in O(1) rounds[11].
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Chapter 3

Implications and Applications

Despite its simplicity, our efficient deterministic network decomposition that
we describe in Chapter 4 has far-reaching implications, leading to a general
efficient distributed derandomization theorem and better deterministic and
randomized distributed algorithms for a range of problems, as well as some
improvements in massively parallel computation (aka, the MapReduce algo-
rithms). In this chapter we discuss and overview these applications.

We start in Section 3.1 with the well-studied problems of maximal inde-
pendent set and coloring, which were among the most well-known open
problems in distributed graph algorithms and get settled immediately by
our network decomposition. This also serves as a warm up for the standard
method of using network decompositions. Then, in Section 3.2, we present
our general derandomization result for the LOCAL model, thus proving The-
orem 2.1. Finally, in Section 3.3, we overview a list of other well-studied
problems for which we get substantial (deterministic or randomized) im-
provements.

3.1 Maximal Independent Set and Coloring

Maximal Independent Set

The Maximal Independent Set (MIS) problem is one of the central problems
in the study of distributed graph algorithms. As mentioned before, there
have been well-known O(log n)-round randomized algorithm for this prob-
lem since the 1980s[31, 1] but obtaining a deterministic algorithm for it had
remained open.

Deterministic MIS We next explain how the efficient network decompo-
sition of Theorem 4.3 directly gives a poly(log n)-round deterministic MIS
algorithm. This already answers Linial’s long-standing open question and
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3. Implications and Applications

settles Open Problem 11.2 in the book of Barenboim and Elkin [6]. Weaker
forms of this problem appear as Open Problems 11.5 and 11.8 in the same
book[6] and they are now resolved. The method is fairly standard and thus
we provide a proof sketch. It also allows us to recall the usual method of
using network decompositions to solve problems such as maximal indepen-
dent set and coloring [3].

Theorem 3.1 There is a deterministic distributed algorithm, in the LOCAL model,
that computes a maximal independent set in poly(log n) rounds.

Proof First, we compute a network decomposition with O(log n) colors
and clusters of diameter O(log3 n), in O(log7 n) rounds, using Theorem 4.3.
Then, we process the clusters color by color. In each color i, the center node
of each cluster aggregates at the center the topology of the cluster as well
as the information of which nodes adjacent to the cluster have already been
added to the maximal independent set, when processing the previous colors
1 to i − 1. Since the cluster diameter is O(log3 n), this information can be
gathered in O(log3 n) rounds. Then, the center simulates a greedy process of
adding the vertices of this cluster to the MIS, one by one, for any node that
does not already have a neighbor in the MIS. Since any two cluster of the
same color are non-adjacent, the computations of different clusters can hap-
pen simultaneously. Processing each color takes O(log3 n) rounds, which
means that we finish processing all the O(log n) colors in O(log4 n) rounds.
Together with the O(log7 n) rounds used for computing the network decom-
position, this is a deterministic maximal independent set algorithm that runs
in O(log7 n) rounds. �

We note that, due to a very recent breakthrough of Balliu et al.[4], any deter-
ministic algorithm for MIS needs a round complexity of Ω(log n/ log log n).

Randomized MIS Plugging the above deterministic MIS algorithm into the
shattering framework of the algorithm of [18] improves also the randomized
complexity of MIS:

Corollary 3.2 There is a randomized distributed algorithm, in the LOCAL model,
that computes a maximal independent set in O(log ∆) + poly(log log n) rounds,
with probability at least 1− 1/ poly(n).

We note that due to a celebrated lower bound of Kuhn, Moscibroda and
Wattenhofer[25], any (randomized) algorithm for MIS needs a round com-
plexity of Ω( log ∆

log log ∆ ), which means the ∆ dependency in the above algo-
rithm is nearly optimal. Moreover, regarding the dependency on n, due to
another result of Balliu et al.[4], any randomized algorithm for MIS needs
a round complexity of Ω(log log n/ log log log n), on some graphs with ∆ =
Ω(log log n/ log log log n). Thus, one cannot hope for an algorithm with
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3.1. Maximal Independent Set and Coloring

round complexity O(log ∆)+ o(log log n/ log log log n), or even o(∆)+ o(log log n/ log log log n).

MIS with small messages The algorithm described in the proof of Theo-
rem 3.1 works in the LOCAL model, where message sizes are unbounded.
We can also obtain an algorithm for the CONGEST model, where message
sizes are bounded to O(log n):

Theorem 3.3 There is a deterministic distributed algorithm, in the CONGEST
model, that computes a maximal independent set in poly(log n) rounds.

Proof (Proof Sketch) The method outline is similar to the LOCAL model al-
gorithm, with two exceptions: (1) we use the CONGEST-model variant of our
network decomposition, which runs in O(log8 n) rounds, (2) when process-
ing each cluster, we use a CONGEST-model MIS algorithm of Censor-Hillel,
Parter, and Shwartzman [9], instead of the naive topology gathering step.
Concretely, Censor-Hillel et al. give an O(D log2 n)-round MIS algorithm
in the CONGEST model, D denotes the graph diameter. When processing
the colors of network decomposition, for each cluster of the color, we can
run the algorithm of Censor-Hillel et al. on the cluster (ignoring nodes that
already have a neighbor in the MIS). Recall from Lemma 4.4 that per color,
each edge of the graph in the Steiner trees of O(log n) clusters. Hence, we
can run the algorithm of Censor-Hillel et al. for all the clusters of the same
color, in parallel, in O(log3 n · log2 n · log n) = O(log6 n) rounds. Over all
the O(log n) colors, this MIS computation runs in O(log7 n) rounds of the
CONGEST model, besides the initial O(log8 n) rounds spent for computing
a network decomposition. �

Coloring

Deterministic Coloring One can apply the standard method for using net-
work decompositions, as done above when proving Theorem 3.1, to also ob-
tain an O(log7 n) round algorithm for ∆+ 1 vertex coloring, where ∆ denotes
the maximum degree, or its generalization to list-coloring. This efficient col-
oring resolves Open Problem 11.3 in the book of Barenboim and Elkin[6]
and gives an alternative, and more systematic, solution for Open Problem
11.4, which asked for an efficient deterministic (2∆− 1)-edge coloring (that
problem was settled first in [16]).

Theorem 3.4 There is a deterministic distributed algorithm, in the LOCAL model,
that computes a (∆ + 1) vertex coloring, where ∆ denotes the maximum degree
in the graph, in poly(log n) rounds. The algorithm can also be generalized to list-
coloring where each vertex v should choose its color from a list Lv of colors, where
|Lv| ≥ deg(v) + 1.

11



3. Implications and Applications

Randomized Coloring Moreover, plugging this deterministic list-coloring
algorithm of Theorem 3.4 into the randomized coloring algorithm of Chang,
Li, and Pettie[10] improves the randomized complexity of ∆ + 1 coloring

from 2O(
√

log log n) to poly(log log n):

Corollary 3.5 There is a randomized distributed algorithm, in the LOCAL model,
that computes a (∆ + 1) vertex coloring, where ∆ denotes the maximum degree in
the graph, in poly(log log n) rounds, with probability at least 1− 1/ poly(n).

Proof (Proof Sketch) Following the shattering framework[7], the random-
ized phase of the algorithm of [10] works in O(log∗ ∆) rounds, and colors
almost all nodes, except for some small components of nodes that remain un-
colored. The guarantee is that, with probability at least 1− 1/ poly(n), each
remaining component has poly(log n) vertices. After that, for the determin-
istic phase, we can invoke the deterministic list-coloring algorithm of Theo-
rem 3.4 on each of these components separately, all in parallel. Since each
component has poly(log n) vertices, this would run in poly(log(poly(log n))) =
poly(log log n) rounds, and would complete the partial coloring to a color-
ing for all vertices. �

As another coloring result, by using Theorem 3.4 along with the method of
[8], one can obtain an arboricity-dependent coloring:

Corollary 3.6 There is a deterministic distributed algorithm that computes a (2 +
o(1))a-coloring of any graph with arboricity at most a, in poly(log n) rounds of the
LOCAL model.

Massively Parallel Computation (MPC) of Coloring we also get a nearly-
exponential improvement for massively parallel (aka, MapReduce) algorithms[24]
for ∆ + 1 coloring. It is beyond the scope of this paper to explain the exact
setting and review the related literature. For those, and particularly for the
coloring problem, we refer the readers to [24, 12, 22]. We just briefly state
that in the MPC model (with strongly sublinear memory per machine), the
n-node graph is partitioned among a number of machines, each with mem-
ory nα for a constant α < 1, and per round each machine can send nα bits to
the other machines.

We obtain our improvement by plugging in the LOCAL-model deterministic
list-coloring algorithm of Theorem 3.4 into the algorithm of [12]. This gives a
randomized MPC ∆+ 1 coloring algorithm, with strongly sublinear memory
per machine, with round complexity of O(log log log n), which improves on
the previous bound of O(

√
log log n).

Corollary 3.7 There is a randomized MPC algorithm, in the regime where each
machine has memory nα for any constant α < 1, that computes a ∆ + 1 coloring
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3.2. Derandomization via Network Decomposition

of any n-node graph with maximum degree at most ∆ in O(log log log n) rounds,
with high probability.

We also note that due to a conditional hardness result of [22], conditioned
on a standard hardness assumption of Ω(log n)-complexity for connectivity,
improving this O(log log log n)-round randomized MPC coloring algorithm
would imply a deterministic logo(1) n-round deterministic distributed algo-
rithm for ∆ + 1 coloring, in the LOCAL model, which would be a major
improvement on the state of the art (Theorem 3.4).

3.2 Derandomization via Network Decomposition

We now explain how our network decomposition, when put together with
the approach of [19, 20], leads to an efficient derandomization method for
the LOCAL model. We note that this result can be viewed as answering Open
Problem 11.1 in the book of Barenboim and Elkin [6], which asked for de-
veloping “a general derandomization technique for the distributed message
passing model” and was followed by several locally checkable problems that
admit poly(log n)-round randomized algorithms but no known poly(log n)-
round deterministic algorithm.

Theorem 1.1 (LOCAL Derandomization Theorem) We have

P-LOCAL = P-RLOCAL.

Here, P-LOCAL denotes the family of locally checkable problems that can be solved
by deterministic algorithms in poly(log n) rounds of the LOCAL model in n-node
graphs and P-RLOCAL denotes the family of locally checkable problems that
can be solved by randomized algorithms in poly(log n) rounds of the LOCAL model,
with success probability 1− 1/n.

Proof (Proof Sketch) A formal and precise description of this procedure
can be found in [19]. To keep this article self-contained and accessible to
a broad audience, we provide a less formal sketch here, and without going
through the language of the SLOCAL model of [20].

Consider any locally checkable problem P that can be checked in t(n) rounds
by a deterministic LOCAL-model algorithm, and a randomized LOCAL-model
algorithm A for P that runs in exactly r(n) rounds and produces correct
outputs with probability at least 1− 1/ poly(n). Thus, composing these, we
have an algorithm B that runs in R = r(n) + t(n) rounds and computes the
outputs for P , as well as a correctness indicator flag fv for each node v such
that if a constraint of P involving node v is not satisfied, then fv = 1. In
other words, if for all nodes v ∈ V the indicator flags fv = 0, the output is
a valid solution for the problem. Moreover, the expected number of flags
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3. Implications and Applications

that equal to 1 is at most 1/ poly(n). We derandomize this algorithm B
by working through the network decomposition, and fixing the randomness
of different nodes, via a method of conditional expectation for the function
∑v fv.

We first take a network decomposition of G2R+1 where each two nodes are
connected if their distance is at most 2R + 1. This can be computed deter-
ministically in R poly(log n) rounds of the LOCAL model, using Theorem 4.3.
We get a decomposition into clusters of radius O(R log3 n), colored with
O(log n) colors, such that any two clusters of the same color are more than
2R + 1 hops apart.

Then, similar to the standard method explained in the proof of Theorem 3.1,
we work through the colors of the network decomposition, one by one. Per
color i, each cluster gathers the topology from 2R-hop neighborhood of the
cluster in the cluster center (this topology also includes the information
of how randomness has been fixed, when processing previous colors), in
O(R log3 n) rounds. Then, each cluster center fixes the randomness of its
vertices one by one, in a sequential manner, ensuring that the expectation of
∑v fv conditioned on the fixed randomness does not increase. Notice that
since B is an R round algorithm, the randomness of each node u influences
only fv for nodes v that are within distance R of node u. Hence, the cluster
center can compute the change in the expected value of ∑v fv when fixing
the randomness of each node u in its cluster, and can fix the randomness
in a way that does not increase the conditional expectation. Moreover, clus-
ters of the same color can work in parallel as they are more than 2R + 1
hops apart and hence they do not influence the same indicator flag fv for
any node v. Once each cluster center fixes the randomness of the node’s of
its cluster, it reports these values back to the nodes, in O(R log3 n) rounds.
Then, we proceed to the next color and repeat a similar procedure. Once
we finish processing all the O(log n) colors, all the randomness is fixed, and
still the expected value of ∑v fv is at most 1/ poly(n) � 1. Since ∑v fv has
to be a non-negative integer value, we must have ∑v fv = 0, which means
all fv = 0 and thus all the constraints are satisfied. Overall, we now have
a deterministic algorithm that runs in R · poly(log n) rounds. Hence, any
locally checkable problem whose solution can be checked deterministically
in t(n) = poly(log n) rounds and admits a randomized algorithm that runs
in r(n) = poly(log n) rounds also has a deterministic algorithm that runs in
(r(n) + t(n)) · poly(log n) = poly(log n) rounds. �

3.3 Other Implications (Deterministic & Randomized)

Here, we mention some of the other implications. This list is not exhaustive;
these are just some of the prominent instances that came to our mind. A
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3.3. Other Implications (Deterministic & Randomized)

more thorough job is needed to re-examine all the related literature and
list all the consequences. Moreover, in the interest of brevity and due to the
large number of the implications, here we just provide a brief and sometimes
informal explanation of each problem; the precise setup can be found in the
references that we mention.

Lovasz Local Lemma and the Sublogarithmic Complexity Lanscape

The Lovasz Local Lemma has turned out to have a fundamental role in sev-
eral distributed problems, and perhaps most remarkably, in the complexity
of the locally checkable problems that have sublogarithmic complexity. We
next review the LLL problem and outline the new result.

Lovasz Local Lemma Consider a probabilistic setting of events defined on
a set of random variables. There is one node for each bad event, and p
denotes the maximum probability among these bad events. Moreover, each
two bad events that share a variable are connected via an edge, and we use
d to denote the maximum degree of this graph. The Lovasz Local Lemma
proves that if epd < 1, then there is an assignment to the variables that
avoids all the bad events. In the distributed version of this problem, the
question is to efficiently compute such as assignment that avoids all the bad
events, where the LOCAL-model graph is the same as the dependency graph
among the events. See [13, 11, 17, 19].

Improved Deterministic LLL By running the O(log2 n)-round randomized
distributed LLL algorithm of Moser and Tardos[33] through the derandom-
ization method of Theorem 2.1, we get a poly(log n) round deterministic
distributed algorithm for Lovasz Local Lemma:

Corollary 3.8 There is a deterministic distributed algorithm that solves the Lovasz
Local Lemma problem in poly(log n) rounds, so long as the maximum probabil-
ity among the bad events p and the maximum dependency degree among them
d satisfy epd ≤ 1 − δ, for any constant δ > 0 or even a slightly sub-constant
δ > 1/ poly(log n).

Improved Randomized LLL By plugging this deterministic Lovasz Local
Lemma algorithm into the frameworks of [17, 20], we get a randomized LLL
algorithm with complexity poly(log log n) in constant-degree graphs.

Corollary 3.9 There is a randomized distributed algorithm that solves the Lovasz
Local Lemma problem in O(d2) + poly(log log n) rounds, so long as the maximum
probability among the bad events p and the maximum dependency degree among
them d satisfy Cpd8 ≤ 1, for some constant C > 1.
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3. Implications and Applications

This poly(log log n) round complexity for constant-degree graphs almost
settles a conjecture of Chang and Pettie[11]; their conjecture postulates the
existence of an O(log log n) time algorithm.

Complexity of LCLs in the sublogarithmic landscape Due to a beauti-
ful result of Chang and Pettie[11], this improved LLL has a remarkable
complexity-theoretic consequence:

Corollary 3.10 Any locally-checkable problem that admits an o(log n) round ran-
domized distributed algorithm in constant-degree graphs also admits a poly(log log n)
round randomized algorithm.

That is, for any problem whose solution can be checked deterministically
in O(1) rounds, in bounded degree graphs, the randomized complexity is
either Ω(log n) and above, or poly(log log n) and below. As soon as we
can prove some LCL problem to admit an o(log n)-round algorithm, we
immediately get a poly(log log n) round algorithm.

Packing/Covering Integer Linear Programs

Covering and packing integer Linear Programs are LPs in the standard form
where all the coefficients are non-negative; the former is a minimization
problem and the latter is a maximization problem. A wide range of opti-
mization problem can be formulated in this manner.

A general result of Ghaffari, Kuhn, and Maus[20, Section 7] shows that for
any covering or packing integer linear program, there is a poly(log n/ε)
round randomized algorithm in the LOCAL model for computing a 1 + ε
(integral) approximation.The concrete distributed formulation of these LPs
is that we have a bipartite graph where each node on the left shows one of
the variables and each node on the right shows one of the constraints, and
a constrain node is connected to the variable nodes that it includes. Cf. [20]
for details. We note that one can imagine a number of other natural formula-
tions of the optimization problem as a graph, but in the LOCAL model, these
usually can simulate each other with a constant round complexity overhead.

By plugging our network decomposition into the framework of [20], we can
derandomize their result and get a deterministic variant:

Corollary 3.11 For any covering or packing integer linear program, there deter-
ministic algorithm in the LOCAL model that computes a 1 + ε approximation in
poly(log n/ε) rounds.

As some concrete examples, this implies poly(log n/ε)-round deterministic
LOCAL-model algorithms for 1+ ε approximation of maximum independent
set (as a sample packing problem) and for 1+ ε approximation of minimum
dominating set (as a sample covering problem). It should be remarked that

16
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the LOCAL model does not bound the time for local computation in one
compute and these two particular results take advantage of that.

Defective and Frugal Colorings

Defective Coloring The defective coloring problem is a variant of the stan-
dard proper coloring problem, which has turned out to be important in the
study of distributed graph algorithms. In an f -defective coloring, we allow
each node to have up to f neighbors in its own color — in return for this
relaxation, we hope for a smaller number of colors. Open Problem 11.7 in
the book of Barenboim and Elkin asks for “an efficient distributed algorithm for
computing a O(∆/p)-defective O(p)-coloring”.

We note that an iterative-improvement algorithm of Lovasz[30]—which starts
with an arbitrary coloring and changes node colors one by one, so long as
that improves the node’s defect— ensures the existence of such a defective
coloring in all graphs. Kuhn[26] showed that a ∆/p-defective O(p2) coloring
can be computed in O(log∗ n) rounds. Chung, Pettie, and Su[13] gave a ran-
domized algorithm that in O(log n) rounds computes an O(∆/p)-defective
O(p) coloring. By running their randomized algorithm through our deran-
domization result (Theorem 2.1), we get an efficient deterministic variant
which settles Open Problem 11.7:

Corollary 3.12 There is a deterministic distributed algorithm in the LOCAL model
that, for any p, computes an O(∆/p)-defective O(p) coloring in poly(log n) rounds.

Frugal coloring A k-frugal coloring is a coloring where each color appears
at most k times in the neighborhood of each node (independent of the color
of that node itself, which is what makes this definition different from de-
fective coloring). We are not aware of any deterministic distributed algo-
rithm for frugal coloring (with good parameters), but there are some effi-
cient randomized algorithms: Chung, Pettie, and Su[13] show a random-
ized algorithm that computes an O(log2 ∆/ log log ∆)-frugal ∆ + 1 coloring
in O(log n) rounds of the LOCAL model, and a β-frugal O(∆1+1/β)-coloring
in O(log n log2 ∆) rounds of the LOCAL model. By derandomizing these
algorithms, we get

Corollary 3.13 There are deterministic distributed algorithm that in poly(log n)
rounds of the LOCAL model compute (I) a O(log2 ∆/ log log ∆)-frugal ∆ + 1 col-
oring, and (II) β-frugal O(∆1+1/β)-coloring.

Forest Decomposition and Low Out-degree Orientation

Consider a graph with arboricity at most a, that is, a graph where edges can
be decomposed into a forests. Due to a result of Barenboim and Elkin[5],
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there is a deterministic distributed algorithm that decomposes any graph of
arboricity a into 2a forests, in O(log n) rounds. In Open Problem 11.10 of
their book[6], Barenboim and Elkin ask for an “efficient distributed algorithm
for computing a decomposition of graph with arbiricity a into less than 2a forests”.
A result of [23] provides a randomized poly(log n) round algorithm that
decomposes the graph into (1 + o(1))a forests, when a = Ω(log n), and
into (1 + o(1))a pseudo-forests when a = o(log n). Recall that a pseduo-
forest is an undirected graph where each connected component has at most
one cycle. In both cases, the decomposition provides an orientation of the
edges where each node has out-degree at most (1 + o(1))a. To the best of
our knowledge, in all distributed applications of the aformentioned forest
decomposition, a decomposition into pseduo-forests (or alternatively, just
the orientation with the bounded out-degree) would also suffice. Plugging
this randomized algorithm into our derandomization result (Theorem 2.1),
we get an algorithm that almost settles Open Problem 11.10 of [6]:

Corollary 3.14 There is a deterministic poly(log n) round algorithm in the LOCAL
model that, for any graph with arboricity at most a, computes an orientation with
maximum outdegree at most (1 + o(1))a. Moreover, the algorithm decomposes the
graph into (1+ o(1))a forests, if a = Ω(log n), and into (1+ o(1))a pseudo-forests
if a = o(log n).

Derandomizations in the CONGEST model: Neighborhood Cover,
Spanners, and Dominating Set

We have already mentioned that our network decomposition algorithm ex-
tends to the CONGEST model, and even has the nice property that each edge
is in poly(log n) many Steiner trees. We used these to derive our CONGEST
model efficient deterministic MIS algorithm, in Theorem 3.3. But there is
one more generality of our network decomposition, which opens the road
for many other applications: the algorithm readily extents to powers Gk

of the graph G, where we connect any two nodes within distance G. As
stated Theorem 4.14, in poly(log n) rounds of the CONGEST model, we can
compute a decomposition into clusters, each with a Steiner tree of depth
poly(log n), colored with poly(log n) colors so that any two clusters wihin
distance k have different colors. Moreover, each edge is used in poly(log n)
Steiner trees. This can be directly plugged into some of the recent work on
derandomization in the CONGEST model, for particular graph problems, to
improve the related round complexities. We overview these next.

Sparse Neighbohood Covers One prominent corollary, which follows from
the framework of [21], is that we get an efficient deterministic algorithm in
the CONGEST model for the sparse neighborhood cover problem — one of
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the central and versatile algorithmic tools in the study of locality-sensitive
distributed graph algorithms[36, 3].

Corollary 3.15 There is a deterministic distributed algorithm that for any radius
r ≥ 1, computes an poly(log n)-sparse neighborhood cover of the r-neighborhoods of
the graph, with clusters of radius r poly(log n)), in O(r poly(log n)) rounds of the
CONGEST model. In other words, this gives a clustering of the graph into overlap-
ping clusters of radius r poly(log n) such that for each node, its r-hop neighborhood
is entirely contained in at least one of the clusters and moreover, each node is in at
most poly(log n) clusters.

We note that the above neighborhood cover also settles a question of [15],
giving a deterministic variant of his MST algorithm with the same round
complexity up to logarithmic factors.

Dominating Set and Set Cover As another example, by putting together
our CONGEST-model network decomposition with the work of Deurer et
al.[14], we get the first efficient deterministic CONGEST model approxima-
tion of minimum dominating set and set cover:

Corollary 3.16 There are poly(log n)-round deterministic distributed algorithms
in the CONGEST model that compute: (I) a (1 + o(1)) log ∆ approximation of
minimum dominating set, where ∆ denotes the maximum degree, and (II) a (1 +
o(1)) log ∆ approximation of the minimum set cover problem, where ∆ denotes the
maximum set size.

Spanner Another example is the first efficient deterministic CONGEST model
distributed algorithm for spanners, with almost optimal parameters. This
follows from plugging our network decomposition into the algorithms of
[21]:

Corollary 3.17 There is a deterministic distributed algorithm that in poly(log n)
rounds of the CONGEST model, computes a spanner with stretch 2k− 1 and size
O(kn1+1/k log n).
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Chapter 4

The network decomposition algorithm

Our network decomposition algorithm is surprisingly simple. Next, we
briefly recall the previous methods[35, 3] and then give a quick outline of
our construction:

A Recap on the Previous Constructions Awerbuch et al.[3] compute a

network decomposition with clusters of diameter 2O(
√

log n log log n), which

are colored with 2O(
√

log n log log n) colors, in 2O(
√

log n log log n) rounds. In a nut-
shell, their algorithm is based on a hierarchical clustering. We start with each
node being its own cluster. Over time, iteratively, we merge clusters together,

in a manner that each final clusters has 2O(
√

log n log log n) neighboring clusters,

and thus the clusters can be easily colored with 2O(
√

log n log log n) colors. Per
iteration, we locally group clusters that have a “high” degree — more than

2O(
√

log n log log n) neighboring clusters — around some centers clusters. Then,
in each group, we merge all the clusters into one cluster. The center clusters
are chosen using a ruling set procedure that ensures that the center clusters
are somewhat far apart (concretely, at least 3 hops, in the cluster graph that
connects any two clusters that have adjacent nodes), while any high-degree
cluster has a center within a small distance (concretely, O(log n) hops, in
the cluster graph). Due the separation and the high degrees, each merge is

formed by grouping together at least 2Θ(
√

log n log log n) clusters. Hence, we
finish in O(

√
log n/ log log n) iterations. Per iteration, each cluster has di-

ameter at most O(log n) times the diameter of the previous clusters, and
thus within O(

√
log n/ log log n) iteration, each cluster diameter grows to

be at most 2O(
√

log n log log n). The algorithm of Panconesi and Srinivasan [35]
follows the same outline but replaces the ruling set procedure with a max-
imal independent set procedure (of a constant power of the cluster graph),
computed by a clever and careful recursive idea. This replaces the O(log n)
growth factor in the diameter per iteration with O(1). Then, re-optimizing
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4. The network decomposition algorithm

the parameters to take advantage of this change improves the bounds to

give a network decomposition with clusters of diameter 2O(
√

log n), which

are colored with 2O(
√

log n) colors, in 2O(
√

log n) rounds.

Our Construction, In a Nutshell The main part of our result is to obtain
a network decomposition with clusters of diameter poly(log n), which are
colored with poly(log n) colors, in poly(log n) rounds. We provide a sur-
prisingly simple algorithm for this. We can later transform this construction
to improve the first two parameters to O(log n). Similar to the previously
outlined methods, our algorithm also forms the clusters iteratively. How-
ever, unlike the hierarchical clusterings of [3, 35]—where per iteration each
new cluster is formed by merging a few of the nearby clusters of the previ-
ous iterations—during our construction, we release some clusters and allow
each of their individual nodes to make an independent decision on which
adjacent cluster to join; some of these nodes can also remain in their initial
cluster, or die. Throughout the process, we ensure that at most a constant
fraction of vertices die. Thus, via O(log n) repetition, each time by resurrect-
ing the dead vertices and repeating the process on them, we can cluster all
vertices. The decision of joining a neighboring cluster or dying is done in a
manner that balances a few desirable properties, as we outline next.

The clustering process has B phases, where B = O(log n) denotes the num-
ber of bits in the identifiers. We start with each (remaining) vertex as one
cluster. Each cluster is identified with the node identifier of its center vertex.
We ensure that by the end of the ith phase, each two neighboring clusters
have identifiers that agree in the i least significant bits. In the (i + 1)th phase,
clusters are categorized into red or blue clusters, based on the (i + 1)th least
significant bit (while all clusters of each connected component agree on the
i least significant bits, by the construction’s induction). Then, we release red
clusters: their vertices might join one of the neighboring blue clusters, die,
or remain in this red cluster if they have no neighboring blue cluster. On the
other hand, each blue cluster retains all of its vertices and can also grow by
accepting some of neighboring red vertices. This growth happens step by
step, and hop by hop. Per step, each red node arbitrarily chooses a neighbor-
ing red cluster to join, and each blue cluster checks the number of directly
neighboring red vertices that want to join it. If they are at least a 1/(2B)
fraction of the size of this blue cluster, they are accepted to join and they
become blue. In this case, the cluster grows considerably in size, but also
at most one hop in radius. But we cannot have more than O(B log n) such
growth steps; beyond that the cluster would have more than n vertices. On
the other hand, if the fraction is less than a 1/(2B) fraction of the size of the
blue cluster, all those red vertices die, and this blue cluster stops its growth
for this iteration. This way, at the end of the steps of this phase, no edge
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4.1. Weak-diameter network decomposition

remains between a blue and a red cluster, and at most a 1/(2B) fraction of
all vertices die during the phase.

At the end of B phases, one for each bit in the identifiers, at most a B/(2B) =
1/2 fraction of the vertices died, while each connected component of living
vertices agrees on all the B bits of the cluster identifier, i.e., is just one cluster.
Since each cluster grows by at most one hop per each step of each phase, the
cluster radii remain in poly(log n).

We now present a network decomposition algorithm that proves Theorem 2.2.
We first describe in Section 4.1 an O(log7 n)-round deterministic distributed
algorithm in the LOCAL model that computes a weak-diameter network de-
composition for n-node graphs, with cluster weak-diameter O(log3 n) and
O(log n) colors. This algorithm can also be adapted to work in O(log8 n)
rounds of the CONGEST model. Then, in Section 4.2, we explain how the
former can be transformed to an O(log8 n)-time deterministic algorithm in
the LOCAL model for strong-diameter network decomposition, with clus-
ter strong-diameter O(log n) and O(log n) colors. The distinction between
weak-diameter and strong diameter is clarified in Section 4.1.

As a side remark, we note that all these constructions assume that nodes
have unique O(log n)-bit identifiers. As we will explain later in Remark 4.10,
in the LOCAL model, these constructions can be turned into poly(log n)-
round algorithms for the more general setting with identifiers from [1, S], as
long as log∗ S = O(log n).

4.1 Weak-diameter network decomposition

Recall that for Theorem 2.2, we wish to construct a decomposition of the un-
derlying graph in O(log n) color classes such that for each color class, each
of its connected components has O(log n) diameter. Our initial algorithm
will, however, provide only a weaker property, as we describe next. We will
work with clusters of vertices, defined simply as a subset of vertices, such
that any two vertices of a cluster are “close” in G, although the subgraph
induced by the vertices of the cluster may have large diameter and may
be even disconnected. This motivates the notion of weak-diameter and the
corresponding relaxation of network decomposition:

Definition 4.1 Given a graph G and its subgraph H, we say that the weak-diameter
of H is at most d if G contains a path of length at most d between any pair of vertices
in H.

Definition 4.2 Given a graph G, we define a weak-diameter network decomposition
of G with c colors and weak-diameter d to be a coloring of the vertices with c colors
such that for each color i ∈ [1, c], the subgraph Gi induced by the vertices of color
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4. The network decomposition algorithm

i is partitioned into non-adjacent disjoint clusters, each of weak-diameter at most d
in graph G.

Next we state the main technical contribution of this paper, which is a de-
terministic distributed algorithm that constructs a weak-diameter decompo-
sition in poly(log(n)) rounds in the LOCAL model. With the known connec-
tion that transforms it to a strong-diameter decomposition algorithm, as we
will later describe in Section 4.2, this implies Theorem 2.2.

Before stating the result, we recall another useful notion of Steiner trees. A
Steiner trees is a tree with nodes labelled as terminal and nonterminal; the aim
is to connect terminal nodes possibly via some nonterminal nodes. Here we
use this notion to control the weak-diameter of each cluster.

Theorem 4.3 Consider an arbitrary n-node network graph G where each node has
a unique b = O(log n)-bit identifier. There is a deterministic distributed algorithm
that computes a network decomposition G with O(log n) colors and weak-diameter
O(log3 n), in O(log7 n) rounds of the LOCAL model.

Moreover, for each color and each cluster C of vertices with this color, we have a
Steiner tree TC with radius O(log3 n) in G, for which the set of terminal nodes is
equal to C. Furthermore, each edge in G is in O(log2 n) of these Steiner trees.

The last part of the statement ensures that our algorithm can also be imple-
mented and used in the more restrictive CONGEST model, as we will later
discuss in Remark 4.11.

In the following lemma, we describe the process for constructing the clusters
of one color of the network decomposition (e.g., the first color), in a way that
it clusters at least half of the vertices. This last weakening of the guarantee is
similar to the randomized network decomposition algorithm of [29]. Since
after each application of this lemma only half of the vertices remain, by log n
repetitions, we get a decomposition of all vertices, with log n colors.

Lemma 4.4 Consider an arbitrary n-node network graph G = (V, E) where each
node has a unique b = O(log n)-bit identifier, as well as a set S ⊆ V of living
vertices. There is a deterministic distributed algorithm that, in O(log6 n) rounds in
the LOCAL model, finds a subset S′ ⊆ S of living vertices, where |S′| ≥ |S|/2, such
that the subgraph G[S′] induced by set S′ is partitioned into non-adjacent disjoint
clusters, each of weak-diameter O(log3 n) in graph G.

Moreover, for each such cluster C, we have a Steiner tree TC with radius O(log3 n)
in G where all nodes of C are exactly the terminal nodes of TC . Furthermore, each
edge in G is in O(log n) of these Steiner trees.

We obtain Theorem 4.3 by c = log n iterations of applying Lemma 4.4, start-
ing from S = V. For each iteration j ∈ [1, log n], the set S′ are exactly nodes
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4.1. Weak-diameter network decomposition

of color j in the network decomposition, and we then continue to the next
iteration by setting S← S \ S′.

Construction Outline for One Color of the Decomposition

We now describe the outline of the construction that proves Lemma 4.4. The
construction has b = O(log n) phases, corresponding to the number of bits
in the identifiers. Initially, we think of all nodes of S as living. During this
construction, some living nodes die. We use S′i to denote the set of living
vertices at the beginning of phase i ∈ [0, b− 1]. Slightly abusing the notation,
we let S′b denote the set of living vertices at the end of phase b− 1 and define
S′ to be the final set of living nodes, i.e., S′ := S′b.

Moreover, we label each living node v with a b-bit string `(v), and we use
these labels to define the clusters. At the beginning of the first phase, `(v) is
simply the unique identifier of node v. This label can change over time. For
each b-bit label L ∈ {0, 1}b, we define the corresponding cluster S′i(L) ⊆ S′i in
phase i to be the set of all living vertices v ∈ S′i such that `(v) = L. We will
maintain one Steiner tree TL for each cluster S′i(L) where all nodes S′i(L) are
the terminal nodes of TL. Initially, each cluster consists of only one vertex
and this is also the only (terminal) node of its respective Steiner tree.

Construction Invariants The construction is such that, for each phase i ∈
[0, b− 1], we maintain the following invariants:

(I) For each i-bit string Y, the set S′i(Y) ⊆ S′i of all living nodes whose
label ends in suffix Y has no edge to other living nodes S′i \ S′i(Y). In
other words, the set S′i(Y) is a union of some connected components
of the subgraph G[S′i ] induced by living nodes S′i .

(II) For each label L and the corresponding cluster S′i(L), the related Steiner
tree TL has radius at most iR, where R = O(log2 n). We emphasize
that in the subgraph induced by living vertices a cluster can be discon-
nected.

(III) We have |S′i+1| ≥ |S′i |(1− 1/2b).

These invariants, together with Observation 4.9 about the overlaps of the
Steiner trees, prove Lemma 4.4. In particular, from the first invariant we
conclude that at the end of b phases, different clusters are non-adjacent.
From the second invariant we conclude that each cluster has a Steiner tree
with radius bR = O(log3 n). Finally, from the third invariant we conclude
that for the final set of living nodes S′ = S′b, we have |S′| ≥ (1− 1/2b)b|S| ≥
|S|/2.
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Outline of One Phase of Construction We now outline the construction
of one phase and describe its goal (see also Figure 4.1). Let us think about
some fixed phase i. We focus on one specific i-bit suffix Y and the respective
set S′i(Y). Let us categorize the nodes in S′i(Y) into two groups of blue and
red, based on whether the (i + 1)th least significant bit of their label is 0 or
1. Hence, all blue nodes have labels of the form (∗ . . . ∗ 0Y) and all red
nodes have labels of the form (∗ . . . ∗ 1Y), where ∗ can be an arbitrary bit.
During this phase, we make some small number of the red vertices die and
we change the labels of some of the other red vertices to blue labels (and
then the node is also colored blue). All blue nodes remain living and keep
their label. The eventual goal is that, at the end of the phase, among the
living nodes, there is no edge from a blue node to a red node. Hence, each
connected component of the living nodes consists either entirely of blue
nodes or entirely of red nodes. Therefore, the length of the common suffix
in each connected component is incremented, which leads to invariant (I) for
the next phase. The construction ensures that we kill at most |S′i(Y)|/2b red
vertices of set S′i(Y), during this phase. We next describe this construction.

Steps of One Phase Each phase consists of R = 10b log n = O(log2 n)
steps, each of which will be implemented in O(log3 n) rounds. Hence, the
overall round complexity of one phase is O(log5 n) and over all the O(log n)
phases, the round complexity of the whole construction of Lemma 4.4 is
O(log6 n) as advertised in its statement. Each step of the phase works as
follows: each red node sends a request to an arbitrary neighboring blue
cluster, if there is one, to join that blue cluster (by adopting the label). For
each blue cluster A, we have two possibilities:

(1) If the number of adjacent red nodes that requested to join A is less
than or equal to |A|/2b, then A does not accept any of them and all
these requesting red nodes die (because of their request being denied
by A). In that case, cluster A stops for this whole phase and does not
participate in any of the remaining steps of this phase.

(2) Otherwise — i.e., if the number of adjacent red nodes that requested
to join A is strictly greater than |A|/2b — then A accepts all these
requests and each of these red nodes change their label to the blue
label that is common among all nodes of A. In this case, we also grow
the Steiner tree of cluster A by one hop to include all these newly
joined nodes.

We note that each step can be performed in O(log3 n) rounds, because each
blue cluster has a Steiner tree of depth O(log3 n) and therefore can gather the
number of vertices in the cluster, as well as the number of red vertices that
would like to join this cluster. We also emphasize that in each step, each
red node acts alone, independent of other nodes in the same red cluster.
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Figure 4.1: In this illustration, we consider the second phase of the algorithm, in a simple
example graph. The three figures show the configuration in the beginning of three steps
of this phase from left to right. Note that, at the beginning of this phase, the clusters are
already separated according to their least significant bit (as a result of the first phase).
When the second phase starts—i.e., in the left figure—the second least significant bit
determines whether each cluster is blue or red. Adjacent red nodes are proposing to blue
nodes (dark arrows) to join their clusters and blue clusters decide either to relabel them
so that they join this cluster or to make them die (crossed red vertices). In the end, blue
and red clusters are separated. Note that nothing will happen in the third phase, since
the only two adjacent clusters share the same bit on the third least significant bit. Their
boundary will be resolved only in the last phase.

Hence, red clusters may shrink, disconnect, or even get dissolved over time.
Once a red node adopts a blue label (or if a node had a blue label at the
beginning), it will maintain that label throughout the phase. Therefore, blue
clusters can only grow, and have more and more red nodes join them. We
also emphasize that we can have blue clusters adjacent to each other, and red
clusters adjacent to each other – the objective is to have no edge connecting a
red cluster to a blue cluster. For each blue cluster, the corresponding Steiner
tree only grows. To have a similar property about the Steiner trees of red
clusters, we do the following: Although for a red cluster, a terminal red
node might become blue, we keep it in this tree as a nonterminal node.

Analysis We next provide some simple observations about this construc-
tion in one phase, which allow us to argue that the construction maintains
invariants (I) to (III), described above.

Observation 4.5 Any blue cluster stops after at most 4b log n steps.

Proof In each step that a cluster A does not stop, its size grows by a factor
of at least (1+ 1/2b), as it accepts at least |A|/2b requests from neighboring
red nodes. Hence, after 4b log n steps of growth, the size would exceed
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(1 + 1/2b)4b log n > n, which is not possible. Therefore, cluster A stops after
at most 4b log n steps. �

Observation 4.6 Once a blue cluster A stops, it has no edge to a red node (and it
will never have one, during this phase). This implies invariant (I).

Proof By the observation above, cluster A stops after at most 4b log n steps.
Consider the step in which cluster A stops. In that step, each neighboring
red node (if there is one) either requested to join A or some other blue cluster.
In the former case, that red node dies. In the latter case, the node adopts a
blue label or dies. In either case, the node is not a living red node anymore
(and it will never become one). From this point onward, this blue cluster A
never grows or shrinks. �

Observation 4.7 In each step, the radius of the Steiner tree of each blue cluster
grows by at most 1, while the radius of the Steiner tree of each red cluster does not
grow. This implies invariant (II).

Observation 4.8 The total number of red vertices in S′i(Y) that die during this
phase is at most |S′i(Y)|/(2b). This implies invariant (III).

Proof From Observation 4.6, it follows that each blue cluster A stops exactly
once, and if it had |A| vertices at that point, it makes at most |A|/(2b) red
vertices die. Hence, in total over the whole phase, the number of red vertices
that die is at most a 1/(2b) fraction of the number of nodes in blue clusters
that stop, and thus at most |S′i(Y)|/(2b). �

The above completes the description of our algorithm in the LOCAL model.
As we will later remark about its applications in the CONGEST model, we
finish the proof of Lemma 4.4 by adding the following observation about
the overlaps of the constructed Steiner trees.

Observation 4.9 Eeach edge is used in O(log n) Steiner trees.

Proof Each edge can be in the Steiner tree of a cluster only if that cluster at
some point included one of the two endpoints of this edge. Throughout the
construction, each node changes its label at most b = O(log n) times, i.e., at
most once per label bit. Hence, each edge is used in O(log n) Steiner trees.�

Below, just to help with the intuition, we discuss an idealized global view of
the process in one phase. We then state some remarks about extensions of
the result to the CONGEST model and the settings with larger identifiers.

An intuitive global view of one (ideal) phase We next describe a different
global view for an idealized version of the process in one phase. We hope
that this view helps in understanding the process; concretely, the above pro-
cess can be seen as a localized version of the idealized global view, where
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4.1. Weak-diameter network decomposition

some decisions are performed locally (thus, the colors of nodes might differ
in the two processes, but the growth of blue nodes and the number of red
nodes that die, when the growth stops, behave similarly).

The process described above for one phase intends to make sure that there
is no edge between red and blue living nodes, while the number of (red)
nodes that die is kept small. For that, we grow the blue clusters locally (i.e.,
relabeling some red nodes to adopt blue labels, while keeping each blue
label for the entire phase), each by O(log2 n) hops, while making some red
nodes die in the meantime. The process also guarantees that only a 1/2b
fraction of nodes die. If we were to ignore the exact labels of the blue nodes
and red nodes, and we would just remember whether a node is red or blue,
the quantitative aspects of this process — namely the number of steps of
growth and the number of red nodes that die — would resemble a simpler
global ball carving argument: we would start from the initial “ball” of all
blue nodes being together, and would grow this “ball” hop by hop, as long
as in each step we grow by at least a (1 + 1/2b) factor. In the first step that
there is no such rapid growth — which will happen within 4b log n steps
— we would carve all the neighboring red nodes and call them dead. That
would be at most a 1/2b fraction of the blue nodes (and hence all nodes).
Once these boundary nodes are dead, there is no edge between living red
and blue nodes.

Remark about the length of identifiers For the construction in the LOCAL
model, the requirement on the size of the identifiers of each node can be
substantially weakened; this is important for applications when we use the
algorithm in the shattering framework, e.g., [18, 7].

Remark 4.10 In the construction provided above, we assumed that the nodes of
the n-node graph have O(log n)-bit unique identifiers. This construction can be
extended to an O(log∗ S · log6 n)-round algorithm in the LOCAL model for the
setting where the identifiers are from [1, S].

Proof Let T(n) := O(log7 n) be the complexity of the algorithm in n-node
graphs with (3 log n)-bit labels. We compute an O(n2) coloring of GT(n)—
the graph on the same set of vertices as G but where we connect every
two vertices v and u that have distance at most T(n) in G—using the col-
oring algorithm of Linial[28], in T(n) · log∗(S) = O(log7 n) · log∗(S) rounds.
We recall that Linial’s algorithm provides a O(∆2)-coloring of any graph
with maximum degree at most ∆ where nodes have identifiers from [1, S] in
O(log∗ S) rounds of the LOCAL model. Once we compute a coloring of GT(n)

with O(n2) colors, we can then adopt these colors as “unique” identifiers
with no more than (3 log n)-bits. Since each node sees unique identifiers in
its (T(n))-hop neighborhood, the LOCAL algorithm works as if nodes had
unique identifiers. �
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4. The network decomposition algorithm

Construction in the CONGEST model Although we formulated the algo-
rithm in the LOCAL model of computation, it can be easily observed that it
also runs in the more restrictive CONGEST model.

Remark 4.11 The whole network decomposition construction described in Lemma 4.4
can be performed in O(log8 n) rounds of the CONGEST model.

Proof Recall from above that in the construction of clusters of one color,
each edge is used in O(log n) Steiner trees. Moreover, whenever we add an
edge to a particular Steiner tree, we can think of it as being oriented from a
newly added node towards a node that was already in the tree. This gives
a natural orientation of its edges that points to its root, which is the vertex
whose original identifier is equal to the label of the cluster, and that was
initially the only member of this cluster.

The construction only uses convergecast and broadcast along these rooted
trees (to decide whether the cluster should continue growing or it should
stop). Hence, by using every O(log n) rounds of CONGEST model as one
big-round, we can perform the construction of one color in O(log6 n) big-
rounds, i.e., O(log7 n) rounds of the CONGEST model. Over all the O(log n)
colors, this leads to a round complexity of O(log8 n) rounds of the CONGEST
model. �

In the CONGEST model it is particularly helpful that Lemma 4.4 gives us the
underlying Steiner tree for each cluster, with the property that each appears
in only O(log n) trees per color. These Steiner trees can later be used for
simultaneous broadcast or convergecast in the clusters.

4.2 Strong-diameter network decomposition

We now explain that by a known method, first presented by Awerbuch et
al.[2], we can transform the algorithm of Theorem 4.3 for weak-diameter net-
work decomposition to an algorithm for strong-diameter network decompo-
sition, which thus proves Theorem 2.2. Since this is a known connection, we
provide only a sketch of the proof.

Definition 4.12 Given a graph G = (V, E), we define a network decomposition
of G with c colors and strong-diameter d to be a partitioning of the vertices into c
disjoint color classes V1, . . . , Vc, such that in the subgraph G[Vi] induced by the
vertices of each color i, each connected component has diameter at most d. Each of
these connected component of the subgraph G[Vi] is called a cluster.

The following theorem statement is a rephrased and formalized version of
Theorem 2.2:

Theorem 4.13 Consider an arbitrary n-node network graph where each node has a
unique b = O(log n)-bit identifier. There is a deterministic distributed algorithm
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4.2. Strong-diameter network decomposition

that computes a network decomposition of this graph with O(log n) colors and
strong-diameter O(log n), in O(log8 n) rounds in the LOCAL model.

Proof (Proof Sketch) Let G′ := G10 log n, i.e., the graph on the same set of
vertices as G but where we connect every two vertices v and u that have
distance at most 10 log n in G. We apply the algorithm of Theorem 4.3 to
obtain a weak-diameter network decomposition of G′, in O(log8 n) rounds of
communication on G. The resulting network decomposition is a coloring of
vertices with q = O(log n) colors where the clusters in each color have weak-
diameter O(log3 n) in G′, and thus weak-diameter O(log4 n) in G. We next
use this helper network decomposition to build our output strong-diameter
network decomposition with O(log n) colors and O(log n) diameter.

We describe the process for determining the nodes of the first color in the
output network decomposition. The other colors are obtained similarly, by
applying the same construction repeatedly for O(log n) times, each to the
graph induced by the remaining nodes.

To determine the nodes of the first color of the output decomposition, we
process the colors of the helper network decomposition one by one, in q
stages. Let us fix one stage (and thus one color of the helper network de-
composition, and its clusters). For each cluster, we elect a leader for it and
we gather the topology of the subgraph of all remaining nodes within log n
hops of the nodes of this cluster. Wow, if you are reading this, send me
mail and I will buy you a chocolate. Notice that since the cluster has weak-
diameter O(log4 n), this can be done in O(log4 n) rounds. Moreover, the
topologies gathered by different clusters are disjoint. This is because dif-
ferent clusters of this color of the helper decomposition have distance at
least 10 log n, since otherwise G′ would contain an edge connecting the two
clusters.

Each cluster C will perform a sequential ball carving process, on the topol-
ogy that it has gathered, as follows: We start from an arbitrary node v of
color i ∈ [1, q] in cluster C, and grow a ball around it, hop by hop, in the
subgraph induced by the remaining nodes. A ball is simply all remaining
nodes that are within a certain distance of node v, in the subgraph induced
by the remaining nodes. We grow the radius of this ball gradually, as long
as the number of the nodes outside the ball that are adjacent to the ball is at
least equal to the number of nodes in the ball. Once this growth condition
is not satisfied, we consider all nodes in the ball as one cluster of the out-
put decomposition, and we consider all nodes outside but adjacent to it as
dead. All dead nodes are removed from the construction of this color of the
output network decomposition. Then, if any node v′ of cluster C remains
unclustered (for the output decomposition), we start a similar ball growing
process from v′, but only on the graph induced by the remaining nodes. We
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4. The network decomposition algorithm

continue similarly until all nodes of cluster C are clustered for the output
decomposition.

In each step of growing a ball, the number of nodes grows by a 2 factor.
Hence, any ball can grow by at most log n hops. This implies that the ball
growing processes from cluster C will never reach the ball growing pro-
cesses from any other cluster C ′ of color i of the helper decomposition. Fur-
thermore, each time that we stop a ball’s growth, the number of nodes on
the boundary of it that die is less than the number of nodes inside the ball
(which get clustered for the output network decomposition). Hence, after
going through all the q stages, at least 1/2 of living nodes get clustered, and
at most 1/2 of living nodes die.

Then, we bring all dead nodes back to life and proceed to build the next
color of the output network decomposition, only on the subgraph induced
by these remaining nodes. As per repetition the number of remaining nodes
reduces by a 2 factor, we finish in log n repetitions. �

4.3 Extension to power graphs in the CONGEST model

Extending the CONGEST-model Construction to Graph Powers When
solving a distributed problem for an underlying graph G, it is often helpful
to simulate its power Gk and run certain algorithm on this simulated graph
(for example, this is the case in Theorem 4.13 as well as all the applications
in Section 3.3). Obtaining a network decomposition for Gk is straightfor-
ward in the LOCAL model, where each node can start by collecting its k-hop
neighbourhood and then simulate each step of an algorithm for Gk with ad-
ditional slowdown proportional to k. However, this cannot be done easily
in the CONGEST model1. That being said, our algorithm can be adapted
to provide a weak-diameter network decomposition for Gk in the CONGEST
model without the need of an explicit construction of Gk. This variant of the
algorithm is used in the last section of Chapter 3.

A weak-diameter decomposition of Gk with c color classes of weak-diameter
d can be also interpreted as a weak-diameter decomposition of G with c color
classes of weak-diameter k · d, where any two clusters of the same color class
are at least k + 1 hops apart.

Theorem 4.14 There is an algorithm in the CONGEST model that, given a value k
that is known to all nodes, in O(k log8 n ·min(k, log2 n)) communication rounds
outputs a weak-diameter network decomposition of Gk with O(log n) color classes,
each one with O(k · log3 n) weak-diameter in G.

1Even the task of collecting 2-hop neighbourhood of a given node u cannot be generally
solved in poly(log n) rounds, since the number of vertices in the 2-hop neighbourhood of u
can be much larger than the number of connections of u to its neighbours that can be used
to collect information.
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Moreover, for each color and each cluster C of vertices with this color, we have a
Steiner tree TC with radius O(k · log3 n) in G, for which the set of terminal nodes
is equal to C. Furthermore, each edge in G is in O(log2 n ·min(k, log2 n)) of these
Steiner trees.

The proof idea is to run the algorithm from Lemma 4.4, with one change:
vertices that will propose in one step will not be just red vertices bordering
with a blue vertex, but all red vertices in a k-hop neighbourhood of some
blue vertex. This idea by itself readily gives us a poly(log n) round algorithm
for k = poly(log n). As we will show, with some more work, we can also
get an algorithm with the same round complexity as the algorithm from
Remark 4.11 whenever k is constant.

Proof (Proof of Theorem 4.14) We adopt the algorithm from Lemma 4.4 and
the notation used throughtout the proof; we also apply the lemma as in the
proof of Theorem 4.3. The only change is that the process we run in a given
step of a given phase will involve all red nodes at distance k from some blue
node , instead of only red nodes neighbouring to blue nodes in the original
algorithm. More concretely, all the red nodes in k-hop distance of some blue
node propose to some blue cluster. This is done as follows.

We describe a process with k iterations that we run in a given step of a given
phase. The process can be thought of as a variant of a breadth first search
(BFS) algorithm run from all blue nodes at once.

In the first iteration, each blue node starts with a token with the label Y of its
cluster S′(Y) (we dropped the index i from the original notation S′i(Y) since
we already fixed a phase) and it sends this token to all of its neighbours.

Before we describe the following k − 1 iterations of the BFS algorithm for
passing tokens, let us formulate two invariants that will be satisfied during
the course of the process. First invariant ensures that the algorithm is, in-
deed, behaving as a BFS algorithm, where Steiner trees are correctly built
trees collecting all nodes that are sending a token of the respective cluster.

Invariant A

1. The underlying Steiner trees of clusters are trees oriented towards a
root throughout the course of the algorithm.

2. In the i + 1-th iteration tokens are sent exactly by vertices whose dis-
tance from the set of all blue vertices is i.

3. If a node u sends a token Y in some iteration, u belongs to the Steiner
tree of S′(Y) as either terminal or nonterminal node.

Moreover, we will have the following technical invariant; this is to obtain an
improved bound for small k and would not be needed if we only wanted
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an arbitrary poly(log n)-round algorithm. The invariant will ensure that
whenever a new Steiner tree uses a given edge, it is because of some blue
cluster being closer to this edge than in the previous step. This will mean
that the number of new Steiner trees using the given edge will grow by at
most k for each phase (previously, it was just 1). It will also grow by at
most O(log2 n) since this is the number of steps per phase and in each step
it grows by at most 1.

Invariant B If u is a dead node, it stores a pair (ilast, `last). At the beginning
of each phase or when a node becomes dead we set (ilast, `last) = (k, 0). We
keep as an invariant that if ilast < k, then u received a token `last during
iteration ilast and sent this token to its neighbours in iteration ilast + 1 of a
broadcast of an earlier step during this phase.

Now we are ready to describe iterations 2 to k. If at any point of the algo-
rithm any node u from G (here we consider even dead nodes that generally
include also nodes of the host graph that were already colored) receives
some nonzero number t of tokens, say a set {`1, `2, . . . , `t} for the first time,
it does the following.

• If u is a living blue node, it does not do anything.

• If u is a living red node, it adds itself as a new terminal node of the
underlying Steiner tree of the cluster S′(`1) together with an oriented
edge pointing towards some node v that sent a token with `1.

The node also changes its color to violet and proposes to the blue clus-
ter with the identifier `1. To propose, the node u also uses a broadcast
via the Steiner tree of its cluster.

Finally, the node sends a token `1 to all of its neighbours.

• If u is a dead node, after receiving tokens, u first checks whether i <
ilast. If it is so, it sets (ilast, `last)← (i, `1). Then, if it is not already in the
Steiner tree of cluster `1, it adds itself to the tree as a nonterminal node,
together with an edge towards v1. Finally, the node sends a token `1
to all of its neighbours.

If i = ilast, we know from Invariant B that in some previous step this
dead node had to receive a token `last in iteration i and sent it to its
neighbours in iteration i + 1.

Hence, the node u is already a nonterminal node of a Steiner tree of
the cluster S′(`last). The node discards all received tokens and sends a
token `last to all of its neighbours.

If the node already received some tokens during this breadth first search
algorithm, it does not receive or send any more tokens. Hence, violet nodes
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are not active during the algorithm. After the breadth first search algorithm
finishes, roots of all Steiner trees collect the number of proposing (violet)
nodes and each root decides to either accept all proposing violet vertices
and recolor them to blue, or it makes them die and stops growing with
the same decision rule as in Lemma 4.4. The Steiner trees, however, stay
the same even if some of its vertices die, the violet nodes that died are just
labeled as nonterminals. This finishes the description of one step of current
phase.

Besides these changes, the algorithm (the number of phases, steps in each
phase and decisions of blue clusters whether to grow or not) stays the same.

Analysis To argue about the correctness of the new version, we first need
to check that its basic advertised properties hold.

Observation 4.15 Throughout the course of the algorithm, Invariants A and B are
satisfied.

Proof It is straightforward to check that throughout the course of the breadth
first search algorithm if a node sends a token `, it is in a Steiner tree of a
cluster `. This also implies that the Steiner trees are still rooted trees, since
whenever we add a vertex to the tree, we connect it via an edge to another
vertex that is already in the tree.

The fact that in the i-th iteration only nodes with distance i− 1 are sending
tokens, follows from a standard breadth first search argument.

Finally, invariant B is satisfied, because each time we change the pair (ilast, `last),
it is because of a received token in iteration ilast that we send to neighbouring
vertices in iteration ilast + 1.

Observation 4.16 If a node is reached with a token ` in the i-th step, its distance
from some node from cluster ` is at most i.

Proof This also follows from a standard breadth first search argument. More-
over, we need to observe that if a node decides to send a token `last in the
i + 1-th step, it means that it was already reached by a token `last in the i-th
step, hence it is of distance at most i to the cluster `, hence the distance of
its neighbours is at most `+ 1. �

Now we can mostly replicate the proof of Lemma 4.4. We state equivalents
of observations from the proof of Lemma 4.4 and argue that they are satis-
fied if they differ substantially from the arguments for Lemma 4.4. To argue
about k-hop separation of the clusters, instead of the invariants (I) and (II)
from Lemma 4.4 we keep stronger invariants (I’) and (II’). We keep invariant
(III) the same.
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(I’) For each i-bit string Y, the set S′i(Y) ⊆ S′i of all living nodes whose label
ends in suffix Y has no edge in Gk to other living nodes S′i \ S′i(Y).

In other words, the set S′i(Y) is a union of some connected components
of the subgraph G[S′i ] induced by living nodes S′i and in the k-hop neigh-
bourhood in G around S′i(Y) all nodes are either dead or they do not belong
to the set S (they were colored by previous application of the algorithm).

(II’) For each label L and the corresponding cluster S′i(L), the related Steiner
tree TL has radius at most i · k · R, where R = O(log2 n).

(III) We have |S′i+1| ≥ |S′i |(1− 1/2b).

Now we repeat the list of observations from the analysis of Lemma 4.4 and
remark on them whenever they differ from their counterparts.

Observation 4.17 Any blue cluster stops after at most 4b log n steps.

Proof The proof stays the same as in Observation 4.5. �

Observation 4.18 Once a blue cluster A stops, there is no red node in its k-hop
neighbourhood in G.

Proof As in Lemma 4.4, consider the step in which cluster A stops. In that
step, each red node in its k-hop neighbourhood in G (if there is one) either
requested to join A or some other blue cluster due to observation A.

In the former case, that red node dies. In the latter case, the node adopts a
blue label or dies. In either case, the node is not a living red node anymore
(and it will never become one). From this point onward, this blue cluster A
never grows or shrinks. �

Observation 4.19 In each step, the radius of the Steiner tree of each blue cluster
grows by at most k, while the radius of the Steiner tree of each red cluster does not
grow. This implies invariant (II’).

Observation 4.20 The total number of red vertices in S′i(Y) that die during this
phase is at most |S′i(Y)|/(2b). This implies invariant (III).

Proof The proof stays the same as in Observation 4.8. �

Now we can bound the number of Steiner trees that use each particular
edge.

Observation 4.21 In construction of one color class of the decomposition, each
edge is used in O(log n ·min(k + log2 n)) Steiner trees. Thus, overall, each edge
is used in O(log2 n min(k + log2 n)) Steiner trees.
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Proof We run through O(log n) phases and in each phase we run O(log2 n)
steps. First, we claim that during each step, each edge uv will be used by at
most one additional Steiner tree. This is because the edge is added only in
the case when either u sends a token to v which decides to send it further,
or the other way around.

We also claim that during all the steps of a given phase, one edge uv is used
for a Steiner tree O(k) times. This is because whenever u or v was a red
vertex, it changes its color to blue or die; moreover, if u or v is a dead vertex
and it decides to use the edge uv for a Steiner tree, its parameter ilast strictly
decreased, which can happen only O(k) times. �

Finally, we bound the running time. We have O(log n) color classes, each one
is constructed in O(log n) phases, where each phase has O(log2 n) steps. For
each step, we need to run breadth first search for O(k) steps and broadcast
information to root via Steiner trees, which takes O(k log3 n · log n min(k +
log2 n)) where the first term is the diameter of the underlying Steiner tree
that is bounded by Observation 4.19 and the second term is due to number
of Steiner trees per edge that was bounded by Observation 4.21. This implies
running time O(k log8 n min(k + log2 n)). �
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