A Sharp Linear Lower Bound in the Multi-Function Partition Problem

Abstract

We consider $k \geq 2$ functions $f_1, \ldots, f_k : E \to F$ with pointwise distinct outputs and the associated *conflict graph* G on E, where xy is an edge iff there exist $p \neq q$ with $f_p(x) = f_q(y)$. Let

$$n^* := \max_{z \in F} \min_{t \in [k]} |f_t^{-1}(z)|$$

be the intrinsic fibre parameter. We prove that any general linear upper bound of the form $\chi(G) \leq c(k) n^*$ (valid for all such instances with k functions) must satisfy $c(k) \geq k$ for every $k \geq 2$. The proof uses a permutation construction with $\chi(G) = k!$ and $n^* = (k-1)!$.

1 Setup

Let $k \geq 2$ and $f_1, \ldots, f_k : E \to F$ satisfy pointwise distinctness:

 $\forall x \in E$, the values $f_1(x), \ldots, f_k(x)$ are pairwise distinct.

Define the conflict graph G on vertex set E by joining distinct $x, y \in E$ whenever

$$\exists p \neq q \in [k] \text{ such that } f_p(x) = f_q(y). \tag{1}$$

A partition $E = \bigsqcup_i E_i$ has the property that $f_p(E_i) \cap f_q(E_i) = \emptyset$ for all $p \neq q$ if and only if each E_i is a stable set in G; hence the minimum number of parts equals $\chi(G)$.

We measure the "size" of fibres by

$$n^* := \max_{z \in F} \min_{t \in [k]} |f_t^{-1}(z)|, \tag{2}$$

the smallest integer n for which the hypothesis " $\forall z \; \exists t \; \text{with} \; |f_t^{-1}(z)| \leq n$ " holds.

2 A permutation construction

Let $E = S_k$ be the set of all permutations of $[k] = \{1, \ldots, k\}$, take F = [k], and define

$$f_i(\pi) := \pi(i) \qquad (\pi \in S_k, \ i \in [k]).$$
 (3)

Pointwise distinctness holds since $\{\pi(1), \dots, \pi(k)\} = [k]$ for each π .

Lemma 1. For the instance (3), the conflict graph G is complete on |E| = k! vertices.

Proof. Let $\pi \neq \sigma \in S_k$. Choose a symbol $s \in [k]$ such that $\pi^{-1}(s) \neq \sigma^{-1}(s)$ (some symbol moves position). Then with $p := \pi^{-1}(s)$ and $q := \sigma^{-1}(s)$ we have $p \neq q$ and

$$f_p(\pi) = \pi(p) = s = \sigma(q) = f_q(\sigma).$$

By (1), π and σ are adjacent. Hence every pair is adjacent and G is complete.

Lemma 2. For the instance (3), for every $z \in [k]$ and $i \in [k]$ the fibre size $|f_i^{-1}(z)| = (k-1)!$. Consequently $n^* = (k-1)!$.

Proof. Fix i and z. The constraint $f_i(\pi) = z$ is $\pi(i) = z$. The remaining k-1 positions can be permuted arbitrarily, giving (k-1)! permutations. For fixed z, the minimum of $|f_i^{-1}(z)|$ over i is therefore (k-1)!, and taking the maximum over z yields $n^* = (k-1)!$.

Combining Lemmas 1 and 2 we obtain

$$\chi(G) = k! = k \cdot (k-1)! = k \, n^*. \tag{4}$$

3 Main lower bound

Theorem 3 (Sharp linear lower bound). Let $c: \{2, 3, ...\} \to \mathbb{R}_{\geq 0}$ be any function with the property that for every instance of k functions as above, the associated conflict graph G satisfies

$$\chi(G) \leq c(k) n^*$$
.

Then necessarily $c(k) \ge k$ for every $k \ge 2$.

Proof. Apply the assumed bound to the permutation instance (3). By (4) we have $\chi(G) = k n^*$, hence

$$k n^* = \chi(G) \le c(k) n^*.$$

Since $n^* > 0$, it follows that $c(k) \ge k$.

Remark 4. The proof is purely extremal and shows that the linear coefficient in any universal bound of the form $\chi(G) \leq c(k) n^*$ cannot be smaller than k. In particular, no bound independent of k is possible, and any attempt to use a constant < k fails already on the permutation family.

Acknowledgement. The permutation construction is folklore in related coloring problems.