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Abstract:

We study suicient degree conditions that force a host graph to contain a given class of
trees. This setting involves some well-known problems from the area of extremal graph
theory. The most famous one is the Erdős-Sós conjecture that asserts that every graph
with average degree greater than k − 1 contains any tree on k + 1 vertices.

Our two main results are the following. We prove an approximate version of the Erdős-
Sós conjecture for dense graphs and trees with sublinear maximum degree. We also study
a natural reĄnement of the Loebl-Komlós-Sós conjecture and prove it is approximately
true for dense graphs.

Both results are based on the so-called regularity method. The second mentioned result
is a joint work with T. Klimošová and D. Piguet.
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Chapter 1

Introduction

Typical problems in extremal graph theory ask, how many edges in a graph force it
to contain a given subgraph. A classical example of a result in this area is TuránŠs
Theorem, which determines the average degree that guarantees the containment of the
complete graph Kr. A more complex example is the Erdős-Stone Theorem [ES46], which
essentially determines the average degree condition guaranteeing that the host graph
contains a Ąxed non-bipartite graph. On the other hand, for a general bipartite graph
the problem is wide open.

In this thesis we study this question when the embedded graph is a tree. Which
conditions force the host graph G to contain any tree with Ąxed number of vertices
as a subgraph? The two classical conjectures in this area that we investigate are the
Erdős-Sós conjecture and the Loebl-Komlós-Sós conjecture.

Conjecture 1.1 (The Erdős-Sós conjecture). Every graph G with average degree
deg(G) > k − 1 contains any tree on k + 1 vertices.

Here deg(G) means the average degree of G; similarly, we denote the minimum and
the maximum degree of G by δ(G) and ∆(G), respectively. Observe that the conjecture
is optimal, since a graph with average degree at most k − 1 may have only k vertices.

The conjecture trivially holds when the tree is a star and a classical result of Erdős
and Gallai [EG59] proves that it also holds for paths. There are many other partial results
concerning the celebrated conjecture. It has been veriĄed for some special families of
host graphs [BD96, SW97, BD07, WLL00, Dob02], special families of trees embedded
[McL05, FS07, Fan13], or when the size of the host graph is only slightly larger than the
size of the tree [Woz96, Tin10, GZ16]. Finally, a solution of this conjecture for large k,
based on an extension of the regularity lemma, has been announced in the early 1990Šs by
Ajtai, Komlós, Simonovits, and Szemerédi. This result will be published as a sequence
of three papers [AKSSa, AKSSc, AKSSb].

Another well-known conjecture in this area is the Loebl-Komlós-Sós conjecture.

Conjecture 1.2 (The Loebl-Komlós-Sós conjecture). Let G be a graph of order n. If
at least n/2 vertices of G have degree at least k, then G contains every tree on k + 1
vertices.

Note that the conjecture is again almost best possible. The degree k cannot be
lowered due to the example of the star K1,k. We have to assume that at least half of the
vertices have high degree due to the following example. Consider a graph consisting of
many disjoint copies of a graph on k + 1 vertices that we get from Kk+1 by deleting all
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edges in a subset of vertices of size at least (k + 3)/2. Such a graph does not contain a
path on k + 1 vertices.

This conjecture was also veriĄed for some special classes of host graphs [Sof00, Dob02],
or trees [BLW00, PS08]. It was proved for dense graphs by [HP16] and, independently by
[Coo09], building on results from [PS12] and [Zha11]. Finally, the approximate version
of this conjecture was proved in a series of four long papers [HKP+17a, HKP+17b,
HKP+17c, HKP+17d] (see [HPS+15] for an overview).

The two main results of this thesis concern these two conjectures and both have a
similar Ćavour. Firstly, both results are approximate (we get arbitrarily close to the
desired result for large sizes of the host graph) and are nontrivial only if the size of the
embedded tree is linear in the size of the host graph.

Secondly, both results concern the class of skewed trees, i.e., trees such that the size
of one of their colour class is at most rk. This allows us to consider reĄnements of
the conjectures above, in particular the conditions imposed on the host graph can be
weakened depending on r.

The Ąrst of the two results that we prove in Chapter 3 is the following Erdős-Sós-like
result. Roughly speaking, it states that one can embed a tree with k vertices and skew
r in every large enough host graph with positive proportion of vertices of degree roughly
k and with minimum degree roughly rk. We have to further assume that the degree of
the tree is sublinear.

Theorem 3.8. For any r, η > 0 there exists n0 and γ > 0 such that the following holds.
Let G be a graph of order n > n0 and T a tree of order k with two colour classes T1, T2

such that ♣T1♣ ≤ rk and ∆(T2) ≤ γk. If δ(G) ≥ rk + ηn, and at least ηn vertices of G
have degree at least k + ηn, then G contains T .

As we will later see, this result is interesting only if k > ηn/2, otherwise there is a
simple greedy way of embedding T in G. Hence we interpret this result as one for trees
of size linear in the size of the host graph; only for such a class of trees this result is
nontrivial. A simple consequence of Theorem 3.8 with r = 1/2 is that the Erdős-Sós
conjecture holds approximately (with error term linear in n) for trees with sublinear
maximum degree.

Theorem 3.10. For any η > 0 there exists n0 and γ > 0 such that for every n > n0, any
graph of order n with average degree deg(G) ≥ k + ηn contains every tree on k vertices
with maximum degree ∆(T ) ≤ γk.

The theorem is again trivial if the size of the tree is not linear in the size of the
host graph. Although this theorem is only a special case of the result of Ajtai, Komlós,
Simonovits, and Szemerédi, we still believe that it is of interest, as its proof is straight-
forward and most probably substantially simpler than their proof.

The main result of Chapter 4 is that the natural extension of the Loebl-Komlós-
Sós conjecture to skewed trees hold approximately for dense graphs (we call this skew
Loebl-Komlós-Sós conjecture).

Theorem 4.4. For any 0 < r ≤ 1/2 and η > 0 there exists n0 ∈ N such that for every
n ≥ n0, any graph of order n with at least rn vertices of degree at least k + ηn contains
every tree of order at most k such that the size of its smaller colour class is at most rk.
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This result is again nontrivial only for trees of size linear in n.

The following chapter of the thesis contain general techniques for embedding trees
that are then used in subsequent two chapters to prove the two mentioned results together
with several others.

The other results in this thesis include a proof that the Loebl-Komlós-Sós conjecture
holds both for trees of diameter at most Ąve (Theorem 4.2) and for paths (Theorem 5.1
and its algorithmic version Theorem 5.2). We also propose several conjectures and prove
another Erdős-Sós-like result for trees of diameter at most four (Theorem 3.6).

The results in Chapters 3 and 4 will be published in a series of three papers. In the
Ąrst paper we provide a proof of Theorem 3.8, in the second paper we prove Theorem
4.4, and in the last paper we prove Theorems 3.6 and 4.2. The last two papers are a
result of joint work with Tereza Klimošová and Diana Piguet. My contribution is in all
three cases proportional to the number of authors of the papers.
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Chapter 2

Techniques

In this chapter we introduce several general results regarding embedding of trees that
we will use in subsequent chapters. We start by introducing some terminology and
proposing few simple structural results. Then we introducing the regularity method Ű a
very eicient tool for embedding results in dense host graphs. This is the basis of our
subsequent results for dense graphs that we prove in Chapters 3 and 4.

2.1 Terminology

Throughout the thesis we use mostly the standard notation. We list all non-usual ter-
minology here.

All graphs in the thesis are simple and loopless. The degree deg(x) of a vertex x is the
number of its neighbours. By deg(x, X) we denote the number of neighbours of x in the
set X. The minimum and maximum degree of G are δ(G) and ∆(G), respectively. We
denote the second largest degree of G by ∆2(G), with possible equality ∆2(G) = ∆(G).
Let G be a graph and let X, Y be disjoint subsets of its vertices. We deĄne E(X, Y ) as the
set of edges of G with one end in X and the other end in Y ; we set e(X, Y ) = ♣E(X, Y )♣.
The density of the pair (X, Y ) is deĄned as d(X, Y ) = e(X,Y )

♣X♣♣Y ♣ . The average degree is

deg(X, Y ) = e(X, Y )/♣X♣ = ♣Y ♣d(X, Y ). The length of the shortest path between two
vertices u, v in G is denoted by distG(x, y). We also sometimes use a symbol Tk to denote
the class of all trees on k vertices, and T r

k to denote the class of tree on k vertices with
skew r.

When speaking about the Loebl-Komlós-Sós conjecture, we will use the term (r, k)-
LKS graph to denote a graph fulĄlling conditions of the conjecture.

DeĄnition 2.1 (LKS graphs). An (r, k)-LKS graph is a non-empty graph that contains
at least rn vertices of degree at least k for 0 < r ≤ 1

2
and k > 0.

Furthermore, in the context of the Loebl-Komlós-Sós conjecture we use the name
L-vertices for the vertices of G with degree at least k. Similarly, S-vertices are vertices
of G that are not L-vertices.

For a given cycle C denote by
−→
C and

←−
C its two orientations. For v, w ∈ C we denote

by v
−→
C w the path starting at v and following the orientation of

−→
C up to w. We also use

symbols v+ and v− to denote the successor and the predecessor of v on
−→
C . We shall use

analogous notation for the other orientation of C as well as for oriented paths. When

we, for example, write
−→
P = u

−→
P v, we say that the Ąrst vertex of the oriented path is u,

while the last one is v.
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Figure 2.1: Trees of diameter four and Ąve Ű notation.

We denote the diameter of T (length of the longest path in T ) by diam(T ). One can
observe that all trees of diameter at most Ąve have very simple structure (Figure 2.1). In
each tree T of diameter at most four there is a vertex x such that all remaining vertices
of T are at distance at most 2 from x. We denote by V the set of neighbours of x and
deĄne W = N(V ) \ ¶x♢. Similarly, in each nontrivial tree of diameter at most Ąve there
are two vertices x1, x2 and vertex sets V1, V2, W1, W2 such that Vi = N(xi)\¶¶x1♢∪¶x2♢♢
and Wi = N(Vi) \ ¶xi♢. Moreover, we denote the set of leaf neighbours of x1 by V ′′

1 and
deĄne V ′

1 = V1 \ V ′′
1 .

2.2 Structure of the host graph

At Ąrst note that there is a simple greedy algorithm for embedding a tree T in a host
graph G: unless the whole T is embedded, choose a yet non-embedded vertex u with
an embedded neighbour v and try to injectively extend the partial mapping φ of T to u
by embedding u in the neighbourhood of φ(v). If δ(G) ≥ ♣T ♣, we will be always able to
injectively extend φ. We will use this observation several times later on.

It is not hard to see that, when proving the Loebl-Komlós-Sós conjecture, one may
assume that the host graph does not contain any edges between its S-vertices. Another
simple, yet important observation is that when one proves the Erdős-Sós conjecture, she
may assume that the minimum degree of the host graph is at least k/2. For completeness,
we give a proof here. Moreover, we prove two similar auxiliary lemmas (their versions
for r = 1/2 are known).

Lemma 2.2 (Folklore). Let G be a graph with deg(G) > t. Then it contains a non-empty
subgraph H such that deg(H) > t and δ(H) > t/2.

Proof. Let H be a minimal subgraph of G with deg(H) > t and for contradiction assume
that v is its vertex of degree less than or equal to t/2. We may erase v from H and the
resulting non-empty graph H ′ contradicts its minimality, because

deg(H ′) = 2
ndeg(H)/2− deg(v)

n− 1
> 2

nt/2− t/2

n− 1
= t.

We continue with a similar observation about (r, k)-LKS graphs that will be later
used in Chapter 5 to verify that the skew Loebl-Komlós-Sós conjecture holds for paths.
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Lemma 2.3 (Lemma 5 in [BLW00] for r = 1/2). Let G be an (r, k)-LKS graph without
edges between its S-vertices. Then it contains a non-empty (r, k)-LKS subgraph H such
that for any subset X ⊆ S(H) we have ♣N(X)♣ > r♣X♣.

Proof. Let H be a minimal (r, k)-LKS subgraph of G. Suppose that we have X ⊆ S(H)
such that ♣N(X)♣ ≤ r♣X♣. Then we may erase X and the resulting non-empty graph H ′

contradicts the minimality of H, because we have

♣L(H ′)♣
♣V (H ′)♣ ≥

♣L(H) \N(X)♣
♣V (H) \X♣ ≥

♣L(H)♣ − r♣X♣
♣V (H)♣ − ♣X♣ ≥

r♣V (H)♣ − r♣X♣
♣V (H)♣ − ♣X♣ = r,

where V (H) and V (H ′) denote the set of L-vertices of H and H ′, respectively.

We employ a similar idea once more in the following lemma to show that every (r, k)-
LKS graph contains a subgraph of average degree depending on r and k. A simple
consequence of this result is that if we possess an (r, k + ηn)-LKS graph such that
k ≤ 1+r

r
ηn, we may embed any tree on k vertices in the host graph by the greedy

algorithm.

Lemma 2.4 (Theorem 5 in [Sof00] for r = 1/2). Each (r, k)-LKS graph G contains a
subgraph H ⊆ G such that deg(H) ≥ 2 r

1+r
k.

Proof. We will prove that the required property holds either for G itself or for G[L] Ű
the subgraph of G induced by its L-vertices.

Suppose that 2e(L)/♣L♣ = deg(G[L]) < 2 r
1+r

k. From this we get that

e(L) <
r

1 + r
♣L♣k.

From the condition on the degree of L-vertices we have 2e(L) + e(L, S) ≥ ♣L♣k, thus we
have

e(L, S) ≥ ♣L♣k − 2e(L) > (1− 2
r

1 + r
)♣L♣k.

For the average degree of G we Ąnally have

deg(G) =
2(e(L) + e(L, S))

n
=

2e(L) + e(L, S) + e(L, S)

n
≥

♣L♣k + (1− 2 r
1+r

)♣L♣k
n

= 2
♣L♣k

(1 + r)n
≥ 2

r

1 + r
k.

2.3 The regularity method

In this section we introduce the regularity method, a well-known technique that can be
applied for embedding trees. The main idea behind the method is that we try to use
the fact that it is generally easier to embed trees in random graphs, as their expansion
properties can compensate for the lack of edges. Large dense graphs are behaving in
a pseudorandom way (this is the regularity lemma), hence it is possible to successfully
apply this idea to them.
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2.3.1 The regularity lemma

We say that (X, Y ) is an ε-regular pair, if for every X ′ ⊆ X and Y ′ ⊆ Y , ♣X ′♣ ≥ ε♣X♣
and ♣Y ′♣ ≥ ε♣Y ♣, ♣d(X ′, Y ′)− d(X, Y )♣ ≤ ε.

Next well-known lemma states that subsets of regular pairs to some extend inherit
the regularity of the whole pair. For more on the lemma, see e.g. [Dvo], or [Die97].

Lemma 2.5. Let G be a graph and (X, Y ) be an ε-regular pair of density d in G. Let
X ′ ⊆ X and Y ⊆ Y such that ♣X ′♣ ≥ α♣X♣ and ♣Y ′♣ ≥ α♣Y ♣. Then, (X ′, Y ′) is an
ε′-regular pair of density at least d− ε, where ε′ = max(ε/α, 2ε).

We say that a partition ¶V0, V1, . . . , Vm♢ of V (G) is an ε-regular partition, if ♣V0♣ ≤
ε♣V (G)♣ all but at most εm2 pairs (Vi, Vj), 1 ≤ i < j ≤ m, are ε-regular. Each set of
the partition is called cluster. We call the cluster V0 the garbage set. We call a regular
partition equitable if ♣Vi♣ = ♣Vj♣ for every 1 ≤ i < j ≤ m.

Lemma 2.6 (Szemerédi regularity lemma). For every ε > 0 there is n0 and M such
that every graph of size at least n0 admits an ε-regular equitable partition ¶V0, . . . , Vm♢
with 1/ε ≤ m ≤M .

Given an ε-regular pair (X, Y ), we call a vertex x ∈ X typical with respect to a set
Y ′ ⊆ Y if deg(x, Y ′) ≥ (d(X, Y ) − ε)♣Y ′♣. Note that from the deĄnition of regularity it
follows that all but at most ε♣X♣ vertices of X are typical with respect to any subset of
Y of size at least ε♣Y ♣. This observation can be strengthened as follows.

Lemma 2.7 (Lemma 4 in [KPR18]). Let ¶V0, V1, . . . , Vm♢ be an ε-regular partition of
V (G) and let X = Vj for some 1 ≤ j ≤ m. Then all but at most

√
ε♣X♣ vertices of a

cluster X are typical w. r. t. all but at most
√

εm sets Vi, i ∈ ¶1, . . . , m♢\j. In Chapter
4 we call such vertices of X ultratypical.

2.3.2 Partitioning trees

Here we state a crucial lemma from [HKP+17d] that allows us to partition the tree
in controllable number of small subtrees that we also call microtrees. These trees are
neighbouring with a set of vertices of bounded size consisting of vertices that we call
seeds. Moreover, we need to work separately with seeds from diferent colour classes of
T . In the following deĄnition, the set WA ∪ WB is the set of seeds of T and the set
DA ∪ DB is the set of its microtrees.

DeĄnition 2.8. [HKP+17d, Definition 3.3] Let T be a tree on k + 1 vertices. An ℓ-fine
partition of T is a quadruple (WA, WB,DA,DB), where WA, WB ⊆ V (T ) and DA and
DB are families of subtrees of T such that

1. the three sets WA, WB and ¶V (K)♢K∈DA∪DB
partition V (T ) (in particular, the

trees in K ∈ DA ∪ DB are pairwise vertex disjoint),

2. max¶♣WA♣, ♣WB♣♢ ≤ 336k/ℓ,

3. for w1, w2 ∈ WA ∪WB their distance is odd if and only if one of them lies in WA

and the other one in WB,

4. ♣K♣ ≤ ℓ for every tree K ∈ DA ∪ DB,
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5. for each K ∈ DA we have NT (V (K)) \ V (K) ⊆ WA. Similarly for each K ∈ DB

we have NT (V (K)) \ V (K) ⊆ WB.

6. ♣N(V (K)) ∩ (WA ∪WB)♣ ≤ 2 for each K ∈ DA ∪ DB,

7. if N(V (K))∩ (WA∪WB) contains two vertices z1, z2 for some K ∈ DA∪DB, then
distT (z1, z2) ≥ 6.

We did not list all properties of ℓ-Ąne partition from [HKP+17d], only those we need.

Lemma 2.9. [HP16, Lemma 5.3] Let T be a tree on k + 1 vertices and let ℓ ∈ N, ℓ < k.
Then T has an ℓ-fine partition.

In the subsequent applications we are always working with ℓ = βk for some small
β > 0.

Observe that the structure that we work with is actually very similar to the structure
of the tree of diameter Ąve Ű the seeds WA, WB behave similarly to the two vertices x1, x2

and the four sets V (
√DA) ∩N(WA), V (

√DA) \N(WA), V (
√DB) ∩N(WB), V (

√DB) \
N(WB) are similar to the sets V1, W1, V2, W2. This is the reason, why we always aim
to prove any embedding result at Ąrst for trees of small diameter (cf. Theorem 3.6 and
Theorem 4.2). Although the class of such trees may not be of particular interest by itself,
the proof guides us towards a general proof for all trees in the dense setting. In Chapter
3 devoted to local approach to Erdős-Sós conjecture, we are not able to prove a general
result for trees of diameter Ąve, only for trees of diameter four (Theorem 3.6). Similarly,
we are not later able to prove a general result for all trees in the dense settings (such
a result actually cannot hold there). This is the reason, why we turn our attention to
trees of sublinear degree that still form a rather general class of trees. For each such tree
we can additionally suppose that the seeds of its ℓ-Ąne partition are only in one colour
class, thus the structure of this one-sided ℓ-Ąne partition resembles the structure of trees
of diameter four.

DeĄnition 2.10. Let T ∈ Tk+1 be a tree and T1, T2 its colour classes. Let ∆ =
maxv∈T2 deg(v). A one-sided ℓ-fine partition of T is a pair (W,D), where W ⊆ V (T1)
and D = D′ ⊔ D′′ is a family of subtrees of T such that

1. the two sets W and ¶V (K)♢K∈D partition V (T ),

2. ♣W ♣ ≤ 336k(1 + ∆)/ℓ,

3. ♣K♣ ≤ ℓ for every tree K ∈ D,

4. For each K ∈ D we have NT (V (K)) \ V (K) ⊆ W .

5. We can split D into two subfamilies, D = D′ ⊔ D′′, in such a way that all trees
from D′ have at most two neighbours z1, z2 ∈ W such that distT (z1, z2) ≥ 4, while
all of at most 336k/ℓ trees from D′′ are singletons with at most ∆ neighbours in
W .

Lemma 2.11. Let T ∈ Tk+1 and let ℓ ∈ N, ℓ < k. Then T has a one-sided ℓ-fine
partition.
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Proof. Let (WA, WB,DA,DB) be an ℓ-Ąne partition of T . Suppose that WB ⊆ T2. Let
W = WA ∪N(WB) and deĄne D as the set of trees of the forest T \W . The conditions
(1), (2), and (4) are clearly satisĄed. Each vertex from W is now a singleton tree in D.
DeĄne D′′ as the family of these singleton trees and set D′ = D \ D′′. Each tree in D′′

clearly satisĄes the conditions (3) and (5). Each tree from D′ is either a tree from DA,
or a subtree of a tree from DB, all such trees satisfy the condition (3). Finally recall
that for each tree from DA ∪ DB with two neighbours z1 and z2 in WA ∪WB we have
distT (z1, z2) ≥ 6. Thus, all trees from DA satisfy the condition (5). Each tree from
DB with two neighbours z1, z2 ∈ WB was split into one tree with two neighbours in W ,
such that their distance in T is at least 4, and maybe several other trees with only one
neighbour in W . All such trees also satisfy (5).

2.3.3 Embedding in regular pairs

In this section we present three embedding lemmas. The Ąrst will be used in Chapter 3
to embed the seeds of a one-sided partition, together with the set D′′, in vertices of two
neighbouring clusters.

Proposition 2.12. For any d, β, ε > 0, ε ≤ d2/100 there exist k0 and γ > 0 such that
the following holds.

Let T be a tree of order k ≥ k0 and T2 one of its colour classes such that ∆(T2) ≤ γk.
Moreover, let (W,D),D = D′ ⊔ D′′ be its one-sided βk-fine partition. Let v1 and v2

be two clusters of vertices forming an ε-regular pair of density at least d. Suppose that
♣v1♣ = ♣v2♣ ≥ k/ML2.6(ε), where ML2.6(ε) is the output of the regularity lemma (Lemma
2.6) with an input ε. Let U ⊆ v1, ♣U ♣ ≤ 2

√
ε♣v1♣. Then there is an injective mapping φ

of W ∪ (
√D′′) that embeds vertices of W in v1 \ U and vertices of

√D′′ in v2.

Proof. Choose γ, k0 > 0 such that

γ =
βd

2000ML2.6(ε)
,

k0 =
10

γ
.

Note that in this case we have

\

\

\

⋃

D′′
\

\

\ ≤ ♣W ♣ ≤ 336(1 + γk)

β
≤ 500γk

β

definition of γ =
500βdk

β · 2000ML2.6(ε)
=

dk

4ML2.6(ε)

♣v1♣ ≥ k/ML2.6(ε) ≤ d

4
♣v1♣.

Take an arbitrary vertex r ̸∈ √D′′ of T and root the tree at r. Order all vertices
of W ∪ (

√D′′) according to an order, in which they are visited by a depth-Ąrst search
starting at r. Let U ′ ⊆ v1∪v2 be the set of vertices of v1 not typical to v2 together with
vertices of v2 not typical to v1. We will provide an algorithm that gradually deĄnes a
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partial embedding φ of the vertices of W ∪ (
√D′′) such that φ(W ) ⊆ v1 \ (U ∪ U ′) and

φ(
√D′′) ⊆ v2 \ U ′.
We iterate over the sequence x1, x2, x3, . . . of vertices from W ∪ (

√D′′), where the
vertices are ordered by the depth-Ąrst search. In the i-th step we deal with the vertex
x = xi. At Ąrst we deal with the case x ∈ W .

Suppose that y ∈ √D′′ is the already embedded parent of x (if y ̸∈ √D′′, our task is
simpler). We want to embed x in an arbitrary neighbour of y in v1 \ (U ∪ φ(W ) ∪ U ′).
To do so, it suices to verify that N(y)\ (U ∪φ(W )∪U ′) is nonempty. This can be done
with the help of the fact that φ(y) is typical to v1 and together with our bound on ♣W ♣:

♣N(y) \ (U ∪ φ(W ) ∪ U ′)♣ ≥ ♣v1♣((d− ε)− 2
√

ε− d

4
− ε) > 0.

Similarly, suppose that x ∈ √D′′. From the deĄnition of D′′ we know that its parent
y is certainly in W and φ(y) is typical to v2. Now we similarly verify that

\

\

\

\

\

N(y) \
⎤

φ
⎞

⋃

D′′
⎡

∪ U ′
⎣

\

\

\

\

\

≥ ♣v2♣((d− ε)− d

4
− ε) > 0.

Next we state another proposition that will help us in Chapter 3 to embed small trees
from a Ąne partition of T in the regular pairs of the host graph. The result is folklore.

Next, we state a similar proposition that enables us to embed small trees from a Ąne
partition of T in the regular pairs of the host graph. The proposition is a variation on
a folklore result and is similar to e.g. Lemma 5 in [KPR18].

Proposition 2.13. For all 1 ≥ d, ε > 0 such that ε < d2/100 there exists β > 0 such
that the following holds.

Let v1, u, v be three clusters of vertices such that v1u and uv are ε-regular pairs of
density at least d. Let v1, v2 be two (not necessarily distinct) vertices of v1. Suppose that
♣v1♣ = ♣u♣ = ♣v♣ ≥ k/ML2.6(ε). Let K be a tree of order at most βk and let x1, x2 be its
two vertices from the same colour class of K such that if v1 ̸= v2, then x1 ̸= x2. Let U be
a subset of vertices of u∪v such that ♣u \U ♣ ≥ 4

√
ε♣u♣ and ♣v \U ♣ ≥ 4

√
ε♣v♣. Moreover,

suppose that either

1. the vertices v1, v2 are typical to u and deg(v1, u)− ♣U ∩ u♣ ≥ 4
√

ε♣u♣,

2. or we have ♣N(vi) ∩ (u \ U)♣ ≥ 3ε♣u♣ for i = 1, 2.

Then there is an injective mapping φ of K in u∪v such that φ(K)∩U = ∅. Moreover,
φ(x1) is a neighbour of v1 and φ(x2) is a neighbour of v2.

Proof. We show the proof for the harder case when v1 ̸= v2. Choose

β = ε/ML2.6(ε).

From this we get

♣v1♣ ≥
k

ML2.6(ε)
= β · ML2.6(ε)

ε
· k

ML2.6(ε)
=

βk

ε
.

13



Note that u \ U contains at least 3ε♣u♣ vertices, and similarly for v. Hence there are
at most ε♣u♣ vertices in u that are not typical to v \ U , and similarly for v. We will use
only typical vertices for embedding, so let U ′ denote the set U together with vertices not
typical to u \ U or v \ U , respectively. Observe that for each such vertex u ∈ u we have

♣N(u) ∩ (v \ U ′)♣ ≥ (d− ε)♣v \ U ♣ − ε♣v♣
♣v \ U♣ ≥ 4

√
ε♣v♣ ≥ (d− ε)4

√
ε♣v♣ − ε♣v♣

d ≫ √
ε ≥ √ε · 4√ε♣v♣ − ε♣v♣ ≥ 2ε♣v♣

♣v♣ ≥ βk/ε ≥ ε♣v♣+ βk ≥ ε♣v♣+ ♣K♣,

and similar holds for any u ∈ v. This means that during embedding we may always Ąnd
a neighbour of u in v \ U ′ that was not yet used for embedding. The same applies for
both vertices v1, v2. In the case (1) the vertices v1, v2 are typical to u and hence we have

♣N(vi) ∩ (u \ U ′)♣ ≥ (d(v1, u)− ε)♣u♣ − ♣U ′ ∩ u♣
≥ deg(v1, u)− ♣U ∩ u♣ − 2ε♣u♣

deg(v1, u) − ♣U ∩ u♣ ≥ 4
√

ε♣u♣ ≥ 4
√

ε♣u♣ − 2ε♣u♣ ≥ 2ε♣u♣
♣u♣ ≥ βk/ε ≥ ε♣u♣+ βk ≥ ε♣u♣+ ♣K♣,

while in the case (2) we have

♣N(vi) ∩ (u \ U ′)♣ ≥ ♣N(vi) ∩ (u \ U)♣ − ε♣u♣
♣N(vi) ∩ (u \ U)♣ ≥ 3ε♣u♣ ≥ 2ε♣u♣

♣u♣ ≥ βk/ε ≥ ε♣u♣+ βk ≥ ε♣u♣+ ♣K♣.

We start by embedding the path t1 = x1, t2, . . . , tℓ = x2 connecting x1 with x2 in K.
Embed x1 in an arbitrary vertex of u \ U ′. For i going from 2 to ℓ − 2 we always map
ti to a neighbour of φ(ti−1) not lying in U ′. Now we observe that both N(v2) ∩ (u \ U ′)
and N(tℓ−2) ∩ (v \ U ′) have sizes at least ε♣v1♣, thus there is an edge connecting those
two neighbourhoods. Map tℓ−1 and tℓ in the two endpoints of the edge. The rest of the
tree can be then embedded in the greedy manner.

Finally, we state a very similar lemma that will be used in Chapter 4.

Lemma 2.14. Let T be a tree with colour classes F1 and F2. Let R ⊆ F1, ♣R♣ ≤ 2 such
that vertices of R do not have a common neighbour in T (if ♣R♣ = 2).

Let ε > 0 and α > 2ε. Let (X, Y ) be an ε-regular pair in a graph G with density
d(X, Y ) > 3α such that ♣F1♣ ≤ ε♣X♣ and ♣F2♣ ≤ ε♣Y ♣. Let X ′ ⊆ X, Y ′ ⊆ Y be sets
satisfying ♣X ′♣ > 2 ε

α
♣X♣, ♣Y ′♣ > 2 ε

α
♣Y ♣.

Let φ be any injective mapping of vertices of R to vertices of X ′ with degree greater
than 3ε♣Y ♣ in Y ′. Then there exists extension of φ that is an injective homomorphism
from T to (X, Y ) satisfying φ(F1) ⊆ X ′ and φ(F2) ⊆ Y ′.

Proof. We embed vertices of V (T ) \ R into vertices of X ′ and Y ′ which are typical to
Y ′ and X ′, respectively. Assume that we have already embedded some part of the tree
in this way. We claim that every vertex of this partial embedding in X is incident with
more than ε♣Y ♣ vertices typical with respect to X ′ which have not been used for the
partial embedding. Similarly, every vertex of the partial embedding in Y is incident
with more than ε♣X♣ vertices typical with respect to Y ′, which have not been used for
the partial embedding.
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We give arguments only for vertices embedded into X, arguments for vertices embed-
ded into Y are symmetric. For φ(r) ∈ X, r ∈ R, the claim follows from the fact that φ(r)
has more than 3ε♣Y ♣ neighbours in Y ′ and out of them, at most ε♣Y ♣ are not typical with
respect to X ′ and at most ε♣Y ♣ have already been used for the partial embedding. Let
φ(v), v ∈ V (T ) \R be a vertex of the partially constructed embedding and without loss
of generality assume φ(v) ∈ X ′. Since φ(v) was chosen to be typical with respect to Y ′, it
is adjacent to at least (d−ε)♣Y ′♣ vertices of Y ′. Again, out of these vertices, at most ε♣Y ♣
are not typical with respect to X ′ and at most ε♣Y ♣ have already been used for the partial
embedding. Thus, φ(v) is typical to at least (d− ε)♣Y ′♣ − 2ε♣Y ♣ > ((d− ε)2 ε

α
− 2ε)♣Y ♣.

This is strictly greater than ε♣Y ♣, since d > 3α and α > 2ε.
It follows that if ♣R♣ < 2, we can construct embedding greedily.
If ♣R♣ = 2, R = ¶u, v♢, we Ąrst embed vertices of a path connecting u and v, starting

from u and embedding all but the last two internal vertices of a path into typical vertices,
last embedded vertex being u′. Then we Ąnd an edge between the sets the set X ′′ of
vertices of N(u′) which are typical to Y ′ and set Y ′′ of vertices of N(v) which are
typical to X ′. Since, X ′′ and Y ′′ have size greater than ε♣X♣ and ε♣Y ♣, respectively by
our previous argument, from ε-regularity of (X, Y ), it follows that there is an edge xy
between X ′′ and Y ′′. We embed the last two internal vertices to x and y.
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Chapter 3

A local approach to the Erdős-Sós
conjecture

After one veriĄes that the Erdős-Sós conjecture is true both for trees of diameter at most
three, and for paths (this was done already by Erdős and Gallai in 1959 [EG59]) one can
observe that such trees can be embedded even in the case when the host graph contains
a vertex of degree at least k and its minimum degree is at least k/2. This is trivial for
trees of small diameter, while for the case of paths this follows from the mentioned proof
of Erdős and Gallai.

While this local condition on the minimum and maximum degree of G, indeed, suices
both for these special cases, it already fails for trees of diameter four, as is demonstrated
by the following example from [HRSW16]. Let T be a tree consisting of a vertex con-
nected to centres of three stars on k/3 vertices and let G be a graph consisting of a vertex
complete to either two cliques of size k/2, or Kk/2,k/2. Then ∆(G) ≥ k and δ(G) ≥ k/2,
but T is not contained in G (see Figure 3.1). This example shows that it would be
naïve to try to prove the Erdős-Sós conjecture in the most general setting using only the
local consequence of the bound on the average degree on the maximum and minimum
degree of G. We will actually show in Section 3 that trees of diameter at most three and
paths are special cases; with high probability, a random tree on k + 1 vertices cannot be
embedded in the host graph with two cliques from Figure 3.1.

Despite this fact, we devote this chapter to this local approach to the Erdős-Sós
conjecture, showing for example, that it can be used to prove an approximate version
of the Erdős-Sós conjecture for trees such that their size is linear in the size of the host

: : : : : : : : :

8 > > > > < > > > > :

k
3
− 1 leaves

Kk=2 Kk=2
Kk=2;k=2

Figure 3.1: A tree on k + 1 vertices and two host graphs of the same size showing that
there are graphs with ∆(G) = k and δ(G) ≥ k/2 that do not contain a tree on k + 1
edges. The example is taken from [HRSW16].
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graph, while their maximum degree is sublinear. The idea to use only conditions on the
minimum and maximum degree comes from the paper of Havet, Reed, Stein, and Wood
[HRSW16].

We discuss the following natural questions.

1. Which trees can be embedded in any host graph satisfying ∆(G) ≥ k and δ(G) ≥
k/2?

2. What is the smallest constant c1 such that every graph with ∆(G) ≥ k and δ(G) ≥
c1k allows embedding of any tree with k+1 vertices? Strictly speaking, the smallest
constant may not exist. On the other hand, setting c1 = 1 clearly suices.

3. Is there a minimal c2 such that every graph with ∆(G) ≥ c2k and δ(G) ≥ k/2
allows embedding of any tree with k + 1 vertices?

4. What is the minimal number of vertices of degree at least k that a graph G with
δ(G) ≥ k/2 has to contain, so that it then allows embedding of any T on k + 1
vertices?

The second question was considered in the paper of Havet, Reed, Stein, and Wood
[HRSW16], and we only state their results.

1) Restricting the class of embedded trees

We observe that the example graph with two cliques from Figure 3.1 actually provides
a large class of trees on k + 1 vertices that cannot be embedded in this graph.

Proposition 3.1 (S. Wagner, personal communication). For even k it holds that the
probability that a random unlabelled tree of size k + 1 can be embedded in the graph G
consisting of a vertex complete to two cliques of size k/2 is in O(k−1/2).

Proof. We at Ąrst classify trees on k + 1 vertices that can be embedded in G. A vertex
u ∈ T is a centroid, if after removing it from T we obtain a family of trees such that
each tree is of size at most k/2. Since the size of the graph is the same as the size of the
tree that we embed, only a centroid of T can be embedded in the vertex of G complete
to all other vertices. Since k + 1 is odd, the centroid of the tree is unique. Hence T
can be embedded if and only if the subtrees created after removing its centroid can be
partitioned into two classes such that the number of vertices in each class is k/2. We
call such trees balanced.

Let rk be the number of unlabelled rooted trees with k vertices. A formula of Otter
(see e.g. page 481 of [FS10]) states that rk = Θ(k−3/2 · Bk) for some positive constant
B. Similarly, the number of unlabelled unrooted trees sk is in Θ(k−5/2 ·Bk) for the same
constant B (again page 481 of [FS10]).

Note that the number of balanced trees of order k + 1 is at most r2
k/2+1, since each

such tree can be decomposed into two rooted trees with k/2 + 1 vertices each. Hence
the number of balanced trees is in O(k−3Bk). Comparing this with the sequence sk, we
conclude that the probability that a random unlabelled tree is balanced goes to 0 at a
rate of at least k−1/2.
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2) Greater minimum degree

The second question was considered by Havet, Reed, Stein, and Wood in [HRSW16].
They conjectured the following:

Conjecture 3.2 (Conjecture 1.1 in [HRSW16]). If G is a graph such that δ(G) ≥ ⌊2k/3⌋
and ∆(G) ≥ k, then G allows embedding of any tree on k + 1 vertices.

As one can see from the example in Figure 3.1, this is tight. As an evidence for their
conjecture, they prove its two following weakened variants. The Ąrst variant relaxes the
condition on the maximum degree:

Theorem 3.3 (Theorem 1.2 in [HRSW16]). There is a function g such that any graph
G with δ(G) ≥ ⌊2k/3⌋ and ∆(G) ≥ g(k) allows embedding of any tree on k + 1 vertices.

The second weakening on the other hand shows that the constant c1 from the second
question is strictly smaller than 1.

Theorem 3.4 (Theorem 1.3 in [HRSW16]). There is a constant ε > 0 such that if G is
a graph with δ(G) ≥ (1 − ε)k and ∆(G) ≥ k, then G allows embedding of any tree on
k + 1 vertices.

3) Greater maximum degree

The third question seems to be similar to the previous one. The example in Figure 3.1
shows that we have to take ∆(G) ≥ 4k/3. We conjecture that this is tight:

Conjecture 3.5. If G is a graph such that δ(G) ≥ k/2 and ∆(G) ≥ 4k/3, then G allows
embedding of any tree on k + 1 vertices.

If true, this conjecture would imply that the constant 2/3 from Theorem 3.3 can
be improved to 1/2. We were able to verify the weakening of Conjecture 3.5 with
∆(G) ≥ 4k/3 replaced by ∆(G) ≥ g(k) for some function g for trees of diameter at most
four.

Theorem 3.6. If G is a graph with δ(G) ≥ k/2 and ∆(G) ≥ 2k7, then G allows
embedding of any tree from on k + 1 vertices of diameter at most four.

Note that the Erdős-Sós conjecture was also veriĄed for trees of diameter four in
[McL05], but these two results are incomparable.

4) Many high degree vertices

Finally we consider the question of how many vertices of degree k a graph with G with
δ(G) ≥ k/2 has to have so as to contain all trees on k + 1 vertices. We propose the
following conjecture.

Conjecture 3.7. Every graph G on n vertices with δ(G) ≥ k/2 and at least n
2
√

k
vertices

of degree at least k contains every tree of order k + 1.
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Note that the fraction 1
2
√

k
cannot be substantially improved due to the following

example in the spirit of example from Figure 3.1.
Let k be an odd square and T be a tree of order k+1 consisting of a vertex connected

to centres of
√

k stars on
√

k vertices. Let G be a graph consisting of two disjoint cliques

of order k−1
2

and k+1
2

, and an independent set of
√

k−1
2

vertices complete to both cliques.
A simple calculation shows that the proportion of high degree vertices of G is

√
k−1
2

k +
√

k−1
2

<
1

2
√

k
.

Note that for any c < 1 the left hand side is larger than c
2
√

k
for suiciently large k. One

can check that G does not contain T .
We prove a weakened variant of Conjecture 3.7. SpeciĄcally, we show that it is

asymptotically true if the number of high degree vertices of G as well as the size of the
tree T is linear in the size of G and, moreover, the maximum degree of T is sublinear.
As we have already mentioned, we state a Ąner version of this result for skewed trees.
SpeciĄcally, if we know that the skew of T is at most r, then G contains T even if its
minimum degree is roughly rk.

Theorem 3.8. For any r, η > 0 there exist n0 and γ > 0 such that the following holds.
Let G be a graph of order n > n0 and T a tree of order k with two colour classes T1, T2

such that ♣T1♣ ≤ rk and ∆(T2) ≤ γk. If δ(G) ≥ rk + ηn, and at least ηn vertices of G
have degree at least k + ηn, then G contains T .

We postpone the proof of this theorem to the last section of this chapter. As a special
case for r = 1/2, we get the following weakening of Conjecture 3.7.

Corollary 3.9. For any η > 0 there exist n0 and γ > 0 such that the following holds.
Let G be a graph of order n > n0 and T a tree of order k such that ∆(T ) ≤ γk. If
δ(G) ≥ k/2 + ηn, and at least ηn vertices of G have degree at least k + ηn, then G
contains T .

Finally, Corollary 3.9 yields an approximate version of the Erdős-Sós conjecture for
trees with sublinear degree.

Theorem 3.10. For any η > 0 there exist n0 and γ > 0 such that for every n > n0, any
graph of order n with average degree deg(G) ≥ k + ηn contains every tree on k vertices
with maximum degree ∆(T ) ≤ γk.

Proof. Let η′ = η/2 and let G be a graph on n ≥ n0 =
n0,C3.9(η′)

η
vertices (here n0,C3.9(η

′)

means the output of Corollary 3.9 with input η′). Suppose that k ≥ ηn/2.
We choose a subgraph G′ ⊆ G such that deg(G′) ≥ k + ηn and δ(G′) ≥ k/2 + ηn/2.

Hence we know that the size of G′ is at least k + ηn ≥ ηn ≥ n0,C3.9.
We claim that at least η′♣G′♣ vertices of G′ have degree at least k + η′n and hence

we may apply Corollary 3.9. Otherwise, most of the vertices of G′ have degree less than
k + η′n and we may compute that

deg(G′) ≤ η′ · n + (1− η′) · (k + η′n) < η′n + (k + η′n) = k + 2η′n ≤ k + ηn,

a contradiction.
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k=2 + ηn k=2 + ηn

rk + ηnrk + ηn

ηn

Figure 3.2: Example showing that the condition on bounded degree is needed in the
statement of Theorem 3.8.

Let us state one more remark regarding Theorem 3.8. Although the result of Ajtai,
Komlós, Simonovits, and Szemerédi [AKSSa, AKSSc, AKSSb] implies that the condition
on the maximum degree ∆(T ) in Theorem 3.10 is only an imperfection, it cannot be
omitted in the statement of Theorem 3.8. We show that the theorem is false if we omit
this condition.

SpeciĄcally, we show that for all 0 < r < 1/3 there exists η > 0 such that the
following is true. Let G be a graph on n vertices consisting of two disjoint copies of
complete bipartite graphs with colour classes of sizes rk + ηn and k/2 + ηn. Moreover,
ηn additional vertices are complete to both larger colour classes of the two bipartite
graphs (see Figure 3.2). Let T be a tree on k vertices consisting of a vertex x complete
to centres of rk stars of sizes ⌊1

r
⌋ and ⌈1

r
⌉. The smaller colour class of T has size rk.

Note that for Ąxed r the maximum degree of this smaller colour class of T is constant,
though it is not true for the larger colour class, hence Theorem 3.8 does not apply. We
claim that the tree T is not contained in G if we choose η suiciently small. Suppose
that there is an embedding of T in G. Since G is bipartite with one colour class of size
at most 2rk + 3ηn < (1 − r)k if k is big enough and η suiciently small, the vertex
x must be embedded in the larger colour class. Out of (1 − r)k − 1 leaves at least
(1− r)k− 1− ηn · ⌈1

r
⌉ > k/2 + ηn have to be embedded in the same colour class as x, a

contradiction.
Theorem 3.8 is thus an example of an asymptotic result that does not seem to have

a natural exact strengthening. On the other hand, we believe that the assumption on
the sublinear maximum degree in Corollary 3.9 can be dropped.

3.1 Proof of Theorem 3.6

In this subsection we prove Theorem 3.6. For trees of diameter four we use the notation
from Section 2. The proof is reasonably straightforward, because due to the assumption
that there is a vertex with huge degree, we have a lot of Ćexibility, if we place the central
vertex x ∈ T in the highest degree vertex of G. On the other hand, it does not always
suice to embed c in the highest degree vertex Ű as a counterexample consider G to be
a complete bipartite graph with one partite of size k/2 and the other partite arbitrarily
huge. If ♣W ♣ > k/2, its central vertex has to be embeded in a low degree vertex. This
harder case, however, does not occur when ♣W ♣ < k/2. This will be crucial in the next
subsection, where we prove the corresponding result for dense graphs, being guided by
the approach for small diameter trees from this section.
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v2

v3
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Sv

Lv

v1 v2

Figure 3.3: Two embedding conĄgurations from Lemma 3.11 (left) and Theorem 3.6
(right).

Before proving Theorem 3.6 we propose the following lemma.

Lemma 3.11. If T ∈ Tk+1 and G is a graph with ∆(G) ≥ 2k · ∆2(G)diam(T )−2 and
δ(G) ≥ k/2, then G allows embedding of T .

Proof. Let u be the vertex of degree ∆. We Ąnd a sequence of vertices v1, . . . , vk in N(u)
such that for each 1 ≤ i, j ≤ k, i ̸= j, we have distG\¶u♢(vi, vj) ≥ diam(T )− 1. We Ąnd
the desired set in k steps. In the i-th step we choose the vertex vi and mark all vertices
in G such that their distance to vi in G \ ¶u♢ is at most diam(T ) − 2. In each step we
choose the new vertex only from the vertices that have not been marked yet (see Figure
3.3). Since the number of vertices with their distance to Ąxed vertex being precisely ℓ
can be bounded by ∆(G′)ℓ = ∆2(G)ℓ, the number of marked vertices in each step is
bounded by

∆2(G)0 + ∆2(G)1 + · · ·+ ∆2(G)diam(T )−2 ≤ 2∆2(G)diam(T )−2 .

Thus, as (k − 1) · 2∆2(G)diam(T )−2 + 1 ≤ ∆(G), we may, indeed, Ąnd all the vertices
v1, . . . , vk using the described procedure.

The embedding of T is now straightforward. Let c be a centre of T , i.e., a vertex of
T such that the subtrees T1, . . . , Tp of T \ ¶c♢ are of sizes at most (k + 1)/2− 1 ≤ k/2.
If there are two centres, we choose any. We embed c in u and then gradually embed the
subtrees T1, . . . , Tp. We embed the root of each Ti in vi and then proceed with embedding
of the rest of Ti in G \ ¶u♢ by the greedy method. This can be done for all the subtrees,
because we know that δ(G \ ¶u♢) ≥ k/2− 1 ≥ ♣Ti♣ − 1 and two overlapping trees Ti and
Tj would imply that there is a path of length diam(T ) − 1 + 2 = diam(T ) + 1 in T , a
contradiction.

We now proceed with a proof of Theorem 3.6.

Proof. Let u0 be the vertex of G of degree ∆(G). We deĄne L as the set of vertices of
degree at least k and let S be its complement. Invoking Lemma 3.11, we further assume
that ∆2(G) ≥ k3 +1 as otherwise we would have 2k ·(k3)4−2 ≤ ∆(G). Let u be the vertex
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of G \ ¶u0♢ of degree ∆2(G). Erase the edge uu0 if present; now we assume that all of at
least k3 neighbours of u are S-vertices, otherwise we would get a smaller counterexample
by deleting an edge between two L-vertices, neither of them being u0.

Let x be the vertex of T such that the distance of all vertices of T to x is at most
two. Let T1, . . . , T♣V ♣, ♣T1♣ ≥ · · · ≥ ♣T♣V ♣♣ be the star subtrees with roots y1, . . . , y♣V ♣ that
are children of x.

We now Ąnd a sequence of vertices v1, . . . , vk in N(u) such that (N(vi)∪vi)∩(N(vj)∪
vj) ∩ S = ∅. Similarly to Lemma 3.11, we do this in a simple step-by-step manner. In
the ith step we choose any unmarked vertex from N(u) and mark the vertex itself, its
at most k/2− 1 S-neighbours and at most k neigbours of each of these vertices. Since

(k − 1)(1 + (k/2− 1) + k(k/2− 1)) + 1 ≤ k3 ≤ ♣N(u)♣,

we Ąnd all the vertices v1, . . . , vk by this procedure.
We now consider two cases depending on the skew of T . At Ąrst suppose that

♣V ♣ > ♣W ♣ and, thus, ♣W ♣ ≤ k/2− 1. We embed r in u (i.e., set φ(r) = u) and proceed
with embedding its subtrees T1, . . . , T♣V ♣. In the i-th step we start by embedding ri in vi.
Then we embed its leaf neighbours in the vertices from N(vi) that have not been used
yet for embedding. As we know that no two vertices vi, vj are connected by an edge, we
may, indeed, always do it, because deg(vi) ≥ k/2 ≥ ♣W ♣+ ♣¶r♢♣.

Further we assume that ♣V ♣ ≤ ♣W ♣. If we had that ♣N(vi) ∩ S♣ ≥ ♣T1♣ − 1 for all
1 ≤ i ≤ a1, we could embed T by setting φ(x) = u, φ(yi) = vi for all i and Ąnally
embedding at most ♣T1♣ − 1 leaf neighbours of all vertices yi in their S-neighbourhood.
Thus, we assume the existence of a vertex v ∈ ¶v1, . . . , vk♢ such that ♣N(v)∩S♣ ≤ ♣T1♣−2.
Set Lv := N(v) ∩ L and Sv := N(v) ∩ S. Note that ♣Lv♣+ ♣Sv♣ ≥ k/2 (see Figure 3.3).

We set φ(x) = v and then proceed by step-by-step greedy embedding of subtrees
T♣V ♣, T♣V ♣−1, . . . in G \ Lv. We can continue this process while it is for ♣V ♣ ≥ ℓ ≥ 1 the
case that each vertex in (¶v♢ ∪N(v)) \ Lv has degree at least ♣¶x♢ ∪ T♣V ♣ ∪ · · · ∪ Tℓ♣ − 1
in G \ Lv, i.e., while it holds that

♣T♣V ♣♣+ · · ·+ ♣Tℓ♣ ≤ k/2− ♣Lv♣ ≤ ♣Sv♣.

In the following, let ℓ be the smallest number satisfying the inequality, i.e., we have
embedded trees Tℓ, . . . , T♣V ♣. Now we consider two cases. At Ąrst suppose that x has
at least ♣Sv♣ leaf neighbours. The preceding procedure than embeds the last ♣Sv♣ leaf
subtrees T♣V ♣−♣Sv ♣+1, . . . , T♣V ♣ in Sv. Observe that ♣V ♣ ≤ ♣W ♣ implies ♣V ♣ ≤ k/2. Hence,
♣Lv♣ ≥ k/2− ♣Sv♣ ≥ ♣V ♣ − ♣Sv♣, thus we can embed the vertices y1, . . . , y♣V ♣−♣Sv ♣ in Lv and
Ąnish with embedding their leaf neighbours by the greedy method.

In the second case we embed the vertex yℓ−1 in u ∈ Lv. We know that ♣Tℓ−1♣+ · · ·+
♣T♣V ♣♣ ≥ ♣Sv♣+1. Now it suices to show that ♣Lv♣ ≥ ℓ−1, because then we can embed all
the vertices y1, . . . , yℓ−2 in Lv \ ¶u♢ and then Ąnish by embedding their leaf neighbours
in a greedy manner.

From the fact that all subtrees T1, . . . , Tℓ−2 have size at least two and ♣T1♣ ≥ ♣Sv♣+ 2
we conclude that

♣T2♣+ · · ·+ ♣Tℓ−2♣ ≥ k − (♣Sv♣+ 2)− (♣Sv♣+ 1) = k − 2♣Sv♣ − 3.

Note that each tree T2, . . . , Tℓ−2 is of size at least two, thus

ℓ− 3 ≤ ♣T2♣+ · · ·+ ♣Tℓ−2♣
2

≤ k − 3

2
− ♣Sv♣.
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If k is odd, we have ♣Lv♣+ ♣Sv♣ ≥ k+1
2

, thus ℓ− 3 ≤ k+1−4
2
− ♣Sv♣ ≤ ♣Lv♣ − 2. If k is even,

we have actually ℓ− 3 ≤ k−4
2
− ♣Sv♣, thus we also get ℓ− 3 ≤ ♣Lv♣ − 2. In either case it

holds that ℓ− 1 ≤ ♣Lv♣, as desired.

Observe that the proof of Lemma 3.11 and Theorem 3.6 can be easily altered to give
a proof of the following result.

Proposition 3.12. If G is a graph with δ(G) ≥ rk, r ≤ 1/2 and ∆(G) ≥ 2k7, then
G allows embedding of any tree from T r

k+1 of diametr at most four such that its smaller
colour class contains the vertex x such that the distance of all other vertices of T from
x is at most two.

Indeed, it suices to look only at conĄgurations in which we embed the vertex x in
the highest degree vertex. This is similar to the proof in the next section.

3.2 Proof of Theorem 3.8

In this section we prove Theorem 3.8. We split the proof into three parts. At Ąrst we
preprocess the host graph by applying the regularity lemma and we partition the tree
by applying Lemma 2.11. In the second part we Ąnd a suitable matching structure in
the host graph. In the last part we embed the tree in the host graph.

Preprocessing the host graph and the tree

Fix η, r. Suppose that η < 1. Choose d, ε, β, n0 such that

d =
(ηr)2

1000
,

ε =
(ηrd)20

1015
,

β = min

⎠

βP 2.13(d, ε, f),
ηd

105 ·ML2.6(ε)

⎜

,

γ = γP 2.12(d, ε, β),

n0 = max

⎠

n0,L2.6(ε), 2
k0,P 2.12(d, f)

η
, n0,P 2.13(d, ε, β)

⎜

.

Let G be a Ąxed graph on n ≥ n0 vertices with at least ηn vertices of degree k+ηn and
with δ(G) ≥ rk + ηn. Suppose that k ≥ ηn/2. We apply the regularity lemma (Lemma
2.6) on G with εL2.6 = ε and obtain an ε-regular equitable partition V0, V1, . . . , Vm with
1/ε ≤ m ≤MRL clusters. Each cluster has average degree at least rk + ηn.

Erase all edges within sets Vi of the partition, between irregular pairs, and between
pairs of density lower that d. We have erased at most m ·

⎞

n/m
2

⎡

≤ n2

m
≤ εn2 edges

withing the sets Vi, at most εm2 · (n/m)2 = εn2 edges in irregular pairs, and at most
⎞

m
2

⎡

· d · (n/m)2 ≤ d · n2 edges in pairs of low density. Erase the garbage set V0 and all

of at most εn ·n incident edges. Note that we have erased at most (3ε + d)n2 edges. We
abuse the notation and still call the resulting graph G.

Note that the quantity
√

1≤i≤m ♣Vi♣ · deg(Vi) dropped down by at most (6ε + 2d)n2.

Thus there are at most
√

6ε + 2d · m clusters such that their average degree dropped
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down by more than
√

6ε + 2d · n. Delete all such clusters and incident edges. We again
call the resulting graph G. The average degree of each cluster of G that was not deleted
at Ąrst dropped by at most

√
6ε + 2d ·n. Then we erased at most

√
6ε + 2d ·m clusters,

so now it is at least rk +ηn−2 ·
√

6ε + 2d ·n > rk +ηn/2. Moreover, G contains at least
(η−ε−

√
6ε + 2d)n ≥ ηn/2 vertices of degree at least k+ηn−2 ·

√
6ε + 2d ·n ≥ k+ηn/2.

Hence, there exists a cluster, without loss of generality it is V1, such that the proportion
of vertices of degree at least k + ηn/2 in that cluster is at least η/2 ≥ ε. If we denote by
L this set of high degree vertices of V1, we thus we have deg(V1, Vi) ≥ deg(L, Vi)− ε♣Vi♣
from regularity of each pair (V1, Vi). This yields that deg(V1) ≥ deg(L)− εn ≥ k + ηn/3.

The cluster graph G of G is a graph such that its vertex set are the clusters of G
and there is an edge between two vertices of G if and only if there is a regular pair of
density at least d between the corresponding two clusters in G. The weight of each edge
uv is the average degree of u in v. We use boldface font to denote the vertices and sets
of vertices of G. The vertex set of G is denoted v1, . . . , vm, where each vi corresponds
to the cluster Vi of G.

After preprocessing the host graph we turn our attention to the tree T . Let T1, T2

be its colour classes such that ♣T1♣ ≤ rk and ∆(T2) ≤ γk. We apply Lemma 2.11 with
parameter ℓL2.11 = βk and obtain its one-sided βk-Ąne partition (W,D),D = D′ ⊔ D′′

such that ♣W ♣ ≤ 336(1 + γk)/β and ♣√D′′♣ ≤ 336/β. Moreover, for each K ∈ D′ we
have ♣K♣ ≤ βk and for each K ∈ D′′ we have ♣K♣ = 1. Also note that W ⊆ T1.

Structure of the host graph

We now Ąnd a suitable structure in the cluster graph G that will be used for the em-
bedding of T . It suices to look at the cluster v1, that will serve for the embedding of
the seeds of T , and its neighbourhood.

Let M a maximal matching in N(v1). We will denote by M both the graph and
its underlying vertex set. Suppose that uv ∈ M. Note that from the condition on
maximality we get that there cannot be two vertices x ̸= y ∈ N(v1) \M such that both
xu and yv are edges of G. Thus there are two possibilities for each edge uv; either only
one of its endpoints have neighbours in N(v1)\M, or both of its endpoints have just one
neighbour in N(v1) \M. We can get rid of the second special case as follows. For each
vertex in N(v1) \M we either delete it if it is a common neighbour of at least ηm/40
matching pairs, or we delete all edges in at most 2 · ηm/40 regular pairs connecting the
vertex with these matching pairs. In this way we delete at most 40/η clusters and the
degree of all remaining clusters of G drops down by at most ηm/20 · ♣v1♣+ 40/η · ♣v1♣ ≤
(η/20 + 40ε/η) · n ≤ ηn/10. We abuse the notation and still call the resulting graph G.
The degree of v1 is at least k + ηn/3 − ηn/10 ≥ k + ηn/5 and the average degree of
every cluster is similarly at least rk + ηn/5. The matching M is still maximal in N(v1).
Moreover, we can split M into two colour classes, M = M1 ∪M2, in such a way that
only clusters from M2 have neighbours in N(v1) \M. Let O1 = N(v1) \M. Note that
it is an independent set. DeĄne O2 = N(O1) \ ¶¶v1♢ ∪M♢. Note that N(v1) ∩O2 = ∅.
All these sets are shown in Figure 3.4.

Embedding

We split the last part further into three subparts. At Ąrst we give an overview of the
method that we use for the construction of the mapping φ. Then we formulate several
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M1

M2

O1

O2

v1

Figure 3.4: Cluster v1 and four sets of clusters M1, M2, O1, O2 that will be used for
embedding. The regular pairs of diferent density are sketch by shades of grey (we omit
pairs touching v1).

preparatory technical claims. In the last part we propose the embedding algorithm.

Overview

We gradually construct an injective mapping φ from T to G. In each step φ denotes
the partial embedding that we already constructed. The idea behind the embedding
process is very straightforward Ű we will try to embed microtrees of D inside the regular
pairs in M and ŠthroughŠ the vertices of O1. We will, however, have to overcome several
technical diiculties.

One of the standard approaches of embedding trees, pursued, e.g., in [KPR18], is to
start by embedding the seeds of T in vertices of two clusters (one for each colour class)
such that the neighbourhood of these special clusters is suiciently rich. Moreover, we
embed the seeds in such vertices that are typical to almost all neighbouring clusters.
We then split the microtrees in T into several subsets and embed these each subset of
microtrees in some part of the neighbourhood of the special clusters. Here we take a
diferent approach. We start in the same way by embedding the seeds W of T in a high
degree cluster of G that we call v1. We then propose an algorithm that iterates over
clusters in the neighbourhood of v1, each time Ąnding two clusters that can be used for
embedding of a microtree.

There are two main technical diiculties that we have to overcome. Recall that each
seed is embedded in a vertex that is typical to almost all clusters. This means that
when we choose a pair of clusters that we will use for embedding, we have to Ąnd a
microtree that has not yet been embedded such that its adjacent seeds are embedded
in vertices typical to the Ąrst cluster from the pair. We can ensure that there will be
such microtree, unless the number of vertices that remain to be embedded, is very small,
speciĄcally 4

√
εk. To ensure that we can embed the whole tree T , we at Ąrst allocate a
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small fraction of vertices F ⊆ √ (M ∪O) that we do not use for the embedding during the
main embedding procedure. When only at most 4

√
εk vertices remain to be embedded,

we Ąnally embed this small proportion of trees in the set F .
The second technical problem is that we cannot ensure that all the microtrees have

the same skew. This complicate the main embedding procedure that would have been
simpler in the case of microtrees with uniform skew. During the embedding procedure
we behave against intuition and sometimes redeĄne an embedding of some microtrees.

Preparations

Note that there there may be at most
√

ε♣v1♣ vertices of v1 that are not typical to more
than

√
εm clusters. Indeed, otherwise there would be at least εm♣v1♣ pairs of a cluster

and a vertex not typical to it, which in turn implies existence of a cluster such that more
than ε♣v1♣ vertices are not typical to it. For each cluster v ∈M1 ∪O1 Ąx its arbitrary
subset Fv of size ⌊ηrd♣v♣/300⌋. By the same reasoning there are at most

√
ε♣v1♣ vertices

of v1 that are not typical to more than
√

εm sets Fvi
.

We invoke Proposition 2.12 with parameters dP 2.12 = d, βP 2.12 = β, εP 2.12 = ε, and
fP 2.12 = f . We also choose v2,P 2.12 = v2 to be any cluster from the neighbourhood
of v1,P 2.12 = v1. Finally, we deĄne the set UP 2.12 to be the set of at most 2

√
ε♣v1♣

vertices not typical to more than
√

εm neighbouring clusters vi, or their subsets Fvi
.

Note that due to our initial choice of constants all the conditions from the statement of
the proposition are satisĄed. Hence we embed the vertices of W in v1, while the vertices
of
√D′′ will be embedded in v2. Moreover, each vertex from W is typical to all but at

most
√

εm clusters vi and their Ąxed subsets Fvi
of size ⌊ηrd♣v1♣/300⌋.

Note that each microtree K ∈ D′ has at most two neighbours in W . We call a cluster
u ̸= v1 nice with respect to K ∈ D′, if all neighbours of K are embedded in vertices
typical to u. Note that each vertex from W was mapped to a vertex that is typical to
all but at most

√
εm clusters, thus for each tree K there are at most 2

√
εm clusters that

are not nice to K. We will now, yet again, employ a simple doublecounting argument.
This time we doublecount connections between microtrees from D′ and clusters that are
not nice to them; each such connection is weighted by the size of the tree. We get that
there are at most 2 4

√
εm clusters such that if we take all trees such that the cluster is not

nice to them, then the union of all such trees contains more than 4
√

εk vertices. Delete
all such clusters and if they are from M, delete also their neighbours in M. We also
delete the cluster v2. Moreover, if it is the case that deg(v1) > 2k, we delete several
pairs between v1 and the rest of G so as to achieve that deg(v1) ≤ 2k. Observe that the
average degree of each cluster is still at least

rk + ηn/10− (4 4
√

εm + 2)♣v1♣
m ≥ 1/ε ≥ rk + ηn/10− (4 4

√
ε + 2ε)n

ε ≪ η ≥ rk + ηn/20.

Similarly the degree of v1 is still at least deg(v1) ≥ k + ηn/20. We still call the new
graph G. We also know for each u ∈ N(v1) that the number of vertices in microtrees
such that u is not nice to them is at most 4

√
εk.

Now we will deĄne a small set F ⊆ √

(M ∪ O) that will be used at the end for
embedding of several leftover microtrees with at most 4

√
εk vertices.

Claim 3.13. There is a set F ⊆ √ (M ∪O) satisfying ♣F ♣ ≤ ηrdeg(v1)/100, Fu ⊆ F ∩u
for any u ∈ M1 ∪O1 and ♣F ∩ u♣ = ♣F ∩ v♣ for any uv ∈ M. Moreover, if we extend
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the partial mapping φ of T satisfying φ(T ) ∩ F = ∅ to all trees from D except of some
D̄ ⊆ D with ♣√ D̄♣ ≤ 4

√
εk, then we can injectively extend φ to the whole tree T .

Proof. We deĄne F as follows. For each u ∈M1∪O1 we begin by adding Fu to F . Then
for each set Fu we Ąnd a set of the same size in some neighbour v ̸= v1 of u and also
add this set to F . We call this set Gu. For uv ∈M we take Gu = Fv. For u ∈ O1 we
Ąnd its neighbouring cluster in O2 ∪M2 with at least ⌊ηrd♣u♣/300⌋ vertices that were
not yet added to F and we set Gu to be this set (we explain later, why we always Ąnd a
suitable neighbouring cluster). In the case when Fu ∈ O1, but Gu ∈M2, it is no longer
true that ♣F ∩ u′♣ = ♣F ∩ v′♣ for some matching edge u′v′ ∈M. We again establish the
condition by adding ⌊ηrd♣u′♣/300⌋ vertices from u′ to F . This implies that

♣F ♣ ≤ 3 ·
∑

u∈M1∪O1

⌊ηrd♣u♣/300⌋ ≤ ηrdeg(v1)/100.

Now we explain, why each cluster u ∈ O1 has a neighbour in M2 ∪O2 with at least
⌊ηrd♣u♣/300⌋ vertices that are not yet in F . Since we know that

deg(u,
⋃

(M2 ∪O2)) ≥ rk > 2♣F ♣ > 2deg(u, F ),

there is certainly a cluster v ∈ M2 ∪ O2 such that deg(u, v) > 2deg(u, F ∩ v), thus
deg(u, v\F ) > deg(u, v)/2 ≥ d♣v♣/2, meaning that there is a subset of at least d♣v♣/2 >
⌊ηrd♣v♣/300⌋ vertices in v that can be used to deĄne Gu.

Now we show how to embed any D̄ of small size in F . We deĄne the embedding φ
of all trees K ∈ D̄ in a step-by-step manner. Suppose that u ∈ M1 ∪O1 and Gu ⊆ v.
If the at most two neighbours z1, z2 of K in W are embedded in two vertices of v1 that
are typical to set Fu and, moreover, ♣φ(T ) ∩ Fu♣ ≤ d

2
♣Fu♣ and ♣φ(T ) ∩ Gu♣ ≤ d

2
♣Gu♣, we

can compute that for i = 1, 2 we have

♣Gu \ φ(T )♣ ≥ (1− d

2
)♣Gu♣ ≥ 4

√
ε♣v♣

and

♣N(vi) ∩ (Fu \ φ(T ))♣ ≥ ♣N(vi) ∩ Fu♣ − ♣φ(T ) ∩ Fu♣
vi is typical to Fu ≥ (d− ε)♣Fu♣ − ♣φ(T ) ∩ Fu♣

ε ≪ ηrd2, ♣φ(T ) ∩ Fu♣ ≤ d♣Fu♣/2 ≥ d

3
♣Fu♣ ≥ 3ε♣u♣.

Hence we can use Proposition 2.13 case (2) with parameters UP 2.13 = F̄ ∪φ(T ), where F̄
means the complement of F in our graph, dP 2.13 = d, εP 2.13 = ε, fP 2.13 = f , βP 2.13 = β,
v1,P 2.13 = v1, uP 2.13 = u, vP 2.13 = v, KP 2.13 = K, v1,P 2.13 = φ(z1), v2,P 2.13 = φ(z2). The
proposition then allows us to embed K.

Now it suices to show that for any K we always Ąnd a suitable u such that
φ(z1), φ(z2) are typical to Fu and both Fu and Gu do not contain many embedded
vertices of T . Recall that vertices φ(z1), φ(z2) are typical to all but at most

√
εm sets

Fu. If we cannot use for embedding any other set Fu from remaining clusters of M1∪O1,
it means that we have embedded at least ⌊d

2
· ηrd♣v1♣/300⌋ vertices to this set Fu, or we

have embedded at least the same number of vertices in the appropriate set Gu. This
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means that the number of vertices we have embedded is at least

⎞

♣M1 ∪O1♣ − 2
√

εm
⎡

·
⎠

d

2
· ⌊ηrd♣v1♣/300⌋

⎜

≥
⎠

♣M ∪O1♣
2

− 2
√

εm

⎜

· d
2rη

700
♣v1♣

ε ≪ d10r5η5 ≥
⎠

deg(v1)

2
− 2
√

εm♣v1♣
⎜

· 5
√

ε

m♣v1♣ ≤ n ≥
⎠

k

2
− 2
√

εn

⎜

· 5
√

ε

k ≥ ηn/2 ≥
⎠

1

2
− 4
√

ε

η

⎜

5
√

εk

> 4
√

εk,

a contradiction.

Embedding algorithm

So far we have embedded the set W in vertices of v1 that are typical to almost all
clusters in the neighbourhood of v1. We also embedded the small set D′′. We invoke
Claim 3.13 to get a small set F . Now we will gradually embed microtrees from D in
√

(M ∪O) \ F , until the number of vertices of microtrees that were not embedded yet
is at most 4

√
εk. Then we embed the remaining parts of T in F using Claim 3.13. We

will use the following notation for the sake of brevity.

DeĄnition 3.14. We say that a cluster u is full, if

♣u ∩ (φ(T ) ∪ F
[ ♣ ≥ ♣u♣ − 4

√
ε ♣u♣ .

We say that a cluster u ∈ N(v1) is saturated, if

♣u ∩ (φ(T ) ∪ F
[ ♣ ≥ deg(v1, u)− 4

√
ε ♣u♣ .

We say that a matching edge uv ∈M is saturated, if

♣ (u ∪ v) ∩ (φ(T ) ∪ F
[ ♣ ≥ deg(v1, (u ∪ v))− 8

√
ε ♣u♣ − βk.

Note that every full cluster is also saturated. The intuition behind these deĄnitions
will be clear from the statements of the following claims.

Claim 3.15. If u ∈ N(v1) is not saturated and v ∈ N(u) \ ¶v1♢ is not full, then, unless
♣dom(φ)♣ ≥ k − 4

√
εk, we may injectively extend φ to some K ∈ D that was not yet

embedded in such a way that φ(K ∩ D1) ⊆ u, φ(K ∩ D2) ⊆ v, and φ(K) ∩ F = ∅.

Proof. We have ensured that all trees of D such that u is not nice to them have at most
4
√

εk vertices. Hence there is a yet non-embedded tree K ∈ D such that its at most two
neighbours t1, t2 in W are embedded in vertices of v1 that are typical to u. We may now
apply Proposition 2.13 (1) with dP 2.13 := d, εP 2.13 = ε, βP 2.13 = β, v1,P 2.13 = v1, uP 2.13 =
u, vP 2.13 = v, KP 2.13 = K, vi,P 2.13 = φ(ti), xi,P 2.13 = N(ti) ∩K, UP 2.13 = φ(T ) ∪ F . The
proposition then allows us to extend injectively φ to K.

Claim 3.16. Let φ be a partial embedding of T in G.
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1. There exists either an unsaturated vertex of O1 or an unsaturated edge of M.

2. Suppose that φ(D1)∩(M2) = ∅ and let u ∈ O. There exists a vertex in N(u)\¶v1♢
that is not full.

Proof. 1. Suppose that for each edge uv ∈M we have

♣ (u ∪ v) ∩ (φ(T ) ∪ F
[ ♣ ≥ deg(v1, u ∪ v)− 8

√
ε ♣u♣ − βk

deg(v1, u ∪ v) ≥ 2d ≥ deg(v1, u ∪ v)

⎠

1− 8
√

ε ♣v1♣+ βk

2d♣v1♣

⎜

♣v1♣ ≥ n/ML2.6(ε), k ≤ n ≥ deg(v1, u ∪ v)

⎠

1− 4
√

ε

d
− βn

2dn/ML2.6(ε)

⎜

ε ≪ d, β ≪ d/ML2.6(ε) ≥ deg(v1, u ∪ v)(1− η/100)

and similarly for each u ∈ O1 we have

♣u ∩ (φ(T ) ∪ F )♣ ≥ deg(v1, u)(1− η/100).

Hence we have

\

\

\

⋃

(M ∪O1) ∩ (φ(T ) ∪ F ))
\

\

\ ≥ deg(v1)(1− η/100)

= ηdeg(v1)/100 + deg(v1)(1− η/50)

deg(v1) ≥ k + ηk/20 ≥ ηdeg(v1)/100 + (k + ηk/20)(1− η/50)

♣F ♣ ≤ ηdeg(v1)/100 > ♣F ♣+ k,

a contradiction.

2. Similarly as in the previous case we can compute that we have embedded at least
♣v♣(1 − η/100) ≥ deg(u, v)(1 − η/100) vertices into each full cluster v. Since we
know that deg(v1) ≤ 2k and deg(u) ≥ rk + ηk/20, we thus we have

\

\

\

⋃

(M2 ∪O2) ∩ (φ(T ∩ D2) ∪ F ))
\

\

\ ≥ deg(u)(1− η/100)

≥ ηdeg(u)/50 + deg(u)(1− η/30)

≥ ηrdeg(v1)/100 + (rk + ηk/20)(1− η/30)

> ♣F ♣+ rk

≥ ♣F ♣+ ♣D2♣,

a contradiction.

We can now Ąnish the proof of Theorem 3.8.

Proof. We will gradually embed microtrees from D′ in
√

(M ∪O) in a speciĄed manner
using Claim 3.15, until ♣dom(φ)♣ ≥ k − 4

√
εk, or all edges of M and all vertices of O

are saturated Ű from Claim 3.16 (1) we know that the latter actually cannot be true.
When ♣dom(φ)♣ ≥ k− 4

√
εk, we Ąnish by applying Claim 3.13 on our set F . We split the

embedding procedure into three phases:
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1. Phase 1 – saturating the matching edges of M. In the Ąrst phase we embed
gradually the microtrees of D′ in the edges of M in such a way that for each K ∈ D′

we have φ(K ∩ D1) ⊆ M1. We run the process of applying Claim 3.15 for each
edge uv until either u ∈M1 is saturated, v ∈M2 is full, or ♣dom(φ)♣ ≥ k − 4

√
εk.

2. Phase 2 – saturating the clusters in O. We repeatedly pick a cluster v ∈ O1 and
then embed trees from D′ in it by repeatedly applying Claim 3.15 in such a way
that for each embedded K we have φ(K ∩ D1) ⊆ O1 and φ(K ∩ D2) ⊆M2 ∪O2.
Note that due to Claim 3.16 (2) the cluster v has always a neighbour that is not
full and can be, thus, used for embedding. Hence we can apply this procedure until
all clusters from O1 are saturated, or ♣dom(φ)♣ ≥ k − 4

√
εk.

3. Phase 3 – finalising the matching M. All clusters in O are now saturated.
Our goal is now to show how to saturate the remaining edges of M. This may
not be possible with current φ as it is deĄned right now, since it could have for
example happened that after the Ąrst phase we completely Ąlled one cluster from
a matching pair, while the other cluster remained almost empty. We solve this
problem by potentially redeĄning the embedding of several microtrees that were
embedded in M1 ∪M2 in Phase 1.

Note that for each edge uv ∈M, u ∈M1, it is true that either u is saturated, or
v is full at the end of Phase 1. We deal with the Ąrst case in part (a). In the latter
case we did not embed anything in v in Phase 2. We undeĄne embedding of all
trees that were embedded in uv and saturate this edge in part (c).

(a) If u is saturated, we repeatedly embed trees in uv in such a way that for each
K ∈ D′ we have φ(K ∩ D1) ⊆ v. We do this until either u is full, or v is
saturated. In the latter case the whole edge is saturated. We deal with the
Ąrst case in (b).

(b) Suppose that u is full, but v is not saturated. Note that Claim 3.13 ensures
that ♣F∩u♣ = ♣F∩v♣. Hence it must be the case that

\

\φ(T ) ∩ u
\

\ ≥ \\φ(T ) ∩ v
\

\.
Moreover, in Phase 2 we did not embedded trees in u. This means that there
exists a tree K ∈ D′ that was embed in the matching edge uv in such a way
that

\

\φ(K) ∩ u
\

\ ≥ \

\φ(K) ∩ v
\

\. As long as it is true that ♣(φ(T ) ∪ F ) ∩ u♣ ≥
♣(φ(T ) ∪ F ) ∩ v♣, we Ąnd any tree K with this property and we redeĄne its

embedding. When this procedure ends, we have
\

\

\

\

\φ(T ) ∩ u
\

\− \\φ(T ) ∩ v
\

\

\

\

\ ≤
βk, i.e., the embedding in the edge is balanced.

(c) Finally it suices to show how to saturate an edge uv fulĄlling the balancing
condition (note that if φ(T ) ∩ uv = ∅, then the matching edge is certainly
balanced). We again embed the microtrees in uv one after another. Unless
one of the clusters is saturated, we choose to embed K ∈ D′ in such a way
that the colour class of K with less vertices is embedded in the cluster such
that more of its vertices were already used for embedding of T . In this way
we ensure that the balancing condition still holds.

After one cluster, say u, becomes saturated, we continue by embedding only
in such a way that for each K ∈ D′ we have φ(K ∩D1) ⊆ v. We do this until
either v becomes saturated, or u is full. In the Ąrst case the whole edge uv is
clearly saturated. In the other case note that we have ♣(φ(T )∪F )∩u♣ ≥ ♣u♣−
4
√

ε♣u♣ ≥ deg(v1, v)−4
√

ε♣v♣ and ♣(φ(T )∪F )∩v♣ ≥ deg(v1, u)−4
√

ε♣u♣−βk
due to our balancing condition. Hence the matching edge is saturated.
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We described an algorithm that terminates when ♣dom(φ)♣ ≥ k− 4
√

εk, or all edges of
M and all vertices of O are saturated. But the latter cannot happen due to Claim 3.16
(1). We Ąnish by invoking Claim 3.13.
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Chapter 4

The skew Loebl-Komlós-Sós
conjecture for dense graphs

In this chapter we propose the skew version of the Loebl-Komlós-Sós conjecture. This
was asked by Simonovits [personal communication].

Conjecture 4.1. Any graph of order n with at least rn vertices of degree at least k
contains every tree of order at most k + 1 vertices with skew r.

If true, the conjecture is best possible for the similar reason as the Loebl-Komlós-Sós
conjecture. Indeed, given r ∈ (0, 1/2], consider a graph consisting of a disjoint union of
copies of a graph H with k + 1 vertices consisting of a clique of order ⌊r(k + 1)⌋ − 1, an
independent set on the remaining vertices and the complete bipartite graph between the
two sets (see Figure 4.1). Such a graph does not contain a path on 2⌊r(k + 1)⌋ vertices
(or, to give an example of a tree of maximal order, a path on 2⌊r(k + 1)⌋ vertices with
one end-vertex identiĄed with the centre of a star with k + 1− 2⌊r(k + 1)⌋ leaves).

A proof attempt of such a result starts by verifying that the conjecture holds for trees
of diameter Ąve. This is because (as we mentioned in Chapter 2) the structure of such
trees is similar to the structure of the ℓ-Ąne partition of a general tree. We provide a
proof of this result in the next section.

Theorem 4.2. Let G be a graph on n vertices such that at least rn of its vertices have
degree at least k. Then G allows embedding of any tree from T r

k+1 with diameter at most
five.

(k + 1)− (br(k + 1)c− 1)

br(k + 1)c− 1

Figure 4.1: The graph showing the tightness of Conjecture 4.1 is a disjoint union of
graphs of order k + 1.
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Note that this was already shown in [PS08] for the case r = 1/2.
We continue with the proof of a dense approximate version of the conjecture in the

last section of this chapter. One can Ąnd a sketch of the proof in the extended abstract
[KPR17].

Theorem 4.3. For any 0 < r ≤ 1/2 and η > 0 there exists n0 ∈ N such that for every
n ≥ n0, any graph of order n with at least rn vertices of degree at least k + ηn contains
every tree of order at most k such that the size of its smaller colour class is at most rk.

We will actually prove the following formulation of Theorem 4.3. The equivalence of
the two statements follows from Lemma 2.4.

Theorem 4.4 (restated version of Theorem 4.3). For all q, r, η > 0 there is n0 such
that every graph on n ≥ n0 vertices with at least rn of its vertices having degree at least
(1 + η)k contains any tree from T r

k , if k ≥ qn.

This extends the main result of [PS12], which is a special case of Theorem 4.4 for
r = 1/2. While we use and extend some of their techniques, our analysis is more complex.
As in [PS12], we partition the tree into small rooted subtrees, which we then embed into
regular pairs of the host graph. In order to connect those small rooted trees, we need two
adjacent clusters with adequate average degree to those regular pairs, which typically
will be represented by a matching in the cluster graph. Hence, we need a matching in
the cluster graph that is as large as possible. To this end we use disbalanced regularity
decomposition (see [HLT02]), placing large degree vertices into smaller clusters than
the remaining vertices, hence covering as many low degree vertices as possible by this
matching. We then consider several possible embedding conĄgurations in the regularity
decomposition, depending on the structure of the cluster graph, in particular depending
on the properties of the adjacent clusters with suitable average degree to the optimal
matching.

4.1 Proof of Theorem 4.2

Fix T ∈ T r
k+1 of diameter at most Ąve; we will use the notation from Section 2.1. Note

that we can without loss of generality assume that r(k + 1) is an integer, otherwise we
may work with r′ < r for which it holds.

At Ąrst we decompose G into suitable subsets, i.e., Ąnd suitable structure for em-
bedding. DeĄne L = ¶v ∈ V (G) : deg(v) ≥ k♢ and S = V (G) \ L. We deĄne
S1 = ¶v ∈ S : deg(v, G) ≥ r(k + 1)♢ and set S0 = S \ S1. Further we deĄne
L∗ = ¶v ∈ L : deg(v, L) ≥ r(k + 1)♢ and N = (N(L∗) ∪N(S1)) ∩ (L \ L∗).

We will now describe two possible configurations in G and for both of these conĄgu-
rations we embed T in G. Then we show that at least one of these conĄgurations has to
appear in the host graph.

We will use the following version of the greedy method.

Lemma 4.5. Let G be a graph and φ a partial embedding of T ∈ Tk+1 in G such that
the only non-embedded vertices of T are leaves. Moreover, suppose that deg(φ(u)) ≥ k
for any u ∈ T with a non-embedded neighbour. Then φ can be injectively extended to the
whole T .

Proof. In each step we may arbitrarily embed any yet non-embedded vertex of the tree.
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L

S S1

L

v1 = '(x1)

v2 = '(x2)

v1 = '(x1)

v2 = '(x2)

S0

Figure 4.2: Two embedding conĄgurations from Proposition 4.6 (left) and Proposition
4.7 (right). We Ąnish both cases by applying Lemma 4.5.

A simple consequence of Lemma 4.5 is that if we deĄne φ injectively on ¶x1, x2♢ ∪
V ′

1 ∪V2 such that φ(¶x1♢∪V ′
1 ∪V2) ⊆ L, then φ can be injectively extended to the whole

T .
We now propose the two conĄgurations. In both conĄgurations we assume that there

are two neighbouring vertices of high degree and we prove that in that case we can embed
T in G.

Proposition 4.6. Suppose that there are two neighbours v1, v2 ∈ G such that v1 ∈ L,
deg(v1, L) ≥ r(k + 1) and deg(v2, L) ≥ ♣V2♣+ 1. Then T can be embedded in G.

Proof. Set φ(x1) = v1 and φ(x2) = v2. Embed the vertices of V2 arbitrarily in
the L-neighbourhood of φ(x2). Then embed the vertices of V ′

1 arbitrarily in the L-
neighbourhood of φ(x1). This can be done, since

deg(φ(x1)) ≥ r(k + 1) ≥ ♣¶x1♢♣+ ♣V2♣+ ♣W1♣ ≥ ♣¶x2♢♣+ ♣V2♣+ ♣V ′
1 ♣.

We Ąnish by using Lemma 4.5.

Proposition 4.7. Suppose that there are two neighbours v1, v2 ∈ G such that v1 ∈ L,
deg(v1, L ∪ S1) ≥ ♣V ′

1 ♣+ 1 and deg(v2, L) ≥ r(k + 1). Then T can be embedded in G.

Proof. Set φ(x1) = v1 and φ(x2) = v2. Embed the vertices from V ′
1 arbitrarily in

N(φ(u1))\¶v2♢, suppose that vertices y1, . . . , yt ∈ V ′
1 were embedded in S1. We continue

by embedding their leaf neighbours greedily. This can be done as for any 1 ≤ i ≤ t we
can compute that the degree of each vertex φ(yi) is greater than or equal to the number
of already embedded vertices of T plus the number of leaves to be embedded, i.e.,

deg(φ(yi)) ≥ r(k + 1) ≥ ♣¶x1♢ ∪W1♣
≥ ♣¶x1♢♣+ ♣W1 ∩N(y1 ∪ · · · ∪ yt)♣+ ♣¶yt+1 ∪ · · · ∪ y♣V ′

1 ♣♢♣,
where we used in the last inequality the fact that every vertex from V ′

1 has at least one
leaf neighbour in W1. We follow by embedding the set V2 in L. This can be done, since

deg(φ(u2)) ≥ r(k + 1) ≥ ♣¶x1♢ ∪W1 ∪ V2♣
≥ ♣¶x1♢♣+ ♣W1 ∩N(y1 ∪ · · · ∪ yt)♣+ ♣¶yt+1 ∪ · · · ∪ y♣V1♣♢♣+ ♣V2♣.

Finally we embed the rest of T by invoking Lemma 4.5.
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Now we may proceed with the proof of Theorem 4.2. It suices to show that the
conĄgurations from Propositions 4.6 and 4.7 have to appear in each (r, k)-LKS graph.

Proof. Suppose that G is an (r, k)-LKS graph not containing the conĄgurations from
Propositions 4.6 and 4.7. Observe that the absence of the Ąrst conĄguration implies
that for every v ∈ N we have deg(v, L∗) ≤ ♣V2♣. The absence of the second conĄguration
implies that there are no edges between any two vertices u ∈ L∗ and v ∈ L∗∪S1, because
r(k + 1) ≥ ♣V ′

1 ♣+ 1. Moreover, for any u ∈ N we have deg(u, L ∪ S1) ≤ ♣V ′
1 ♣.

We now derive a contradiction with the assumption that G is an (r, k)-LKS graph.
We start by bounding the numbers of edges e(N, S0). We have

e(N, S0) ≤ ♣S0♣(r(k + 1)− 1)− e(S0, L∗)− e(S0, L \ (L∗ ∪N)), (4.1)

since all vertices in S0 have degree less than r(k + 1) (note that it is an integer). On the
other hand, we have

e(N, S0) ≥ ♣N ♣(k − ♣V ′
1 ♣) (4.2)

from the assumption that all vertices of N have at most ♣V ′
1 ♣ neighbours outside S0. We

continue by bounding the quantity e(N, L∗). We have

e(N, L∗) ≤ N ♣V2♣, (4.3)

because we assume that all vertices in N have at most ♣V2♣ neighbours in L∗. On the
other hand it holds that

e(N, L∗) ≥ ♣L∗♣k − e(L∗, S0), (4.4)

since the vertices in L have degree at least k and we assume that vertices from L∗ have
no neighbours in L∗ ∪ S1. After adding all four inequalities we get

♣S0♣(r(k + 1)− 1)− e(S0, L∗)− e(S0, L \ (L∗ ∪N)) + N ♣V2♣ ≥
♣N ♣(k − ♣V ′

1 ♣) + ♣L∗♣k − e(L∗, S0)

and after rewriting and bounding rk > r(k + 1)− 1 we have

♣S0♣rk + ♣N ♣(♣V2♣+ ♣V ′
1 ♣) ≥ (♣N ♣+ ♣L∗♣)k + e(S0, L \ (L∗ ∪N)).

Now we observe that vertices in L\ (L∗∪N) have less than r(k +1) neighbours in L and
that they have no neighbours in S1, hence their degree in S0 is at least k− r(k +1)+1 >
(1− r)k. Therefore we have

♣S0♣rk + ♣N ♣(♣V2♣+ ♣V ′
1 ♣) ≥ (♣N ♣+ ♣L∗♣)k + ♣L \ (L∗ ∪N)♣(1− r)k.

We use the bound ♣V ′
1 ♣+ ♣V2♣ ≤ r(k + 1)− 1 < rk to get

♣S0♣rk + ♣N ♣rk ≥ (♣N ♣+ ♣L∗♣)k + ♣L \ (L∗ ∪N)♣(1− r)k. (4.5)

Moreover, the last three adjustments gave a strict inequality, if S0, L \ (L∗ ∪ N), or N
were non-empty. But if all of these sets were empty, then also L∗ is empty, because its
vertices do not have neighbours in L∗∪S1, which would mean that G is empty. We have
thus a strict inequality that can be divided to give

r♣S0♣+ r♣N ♣ > ♣N ♣+ ♣L∗♣+ (1− r)♣L \ (L∗ ∪N)♣,
which implies

r♣S0♣ > (1− r)(♣N ♣+ ♣L∗♣+ ♣L \ (L∗ ∪N)♣) = (1− r)♣L♣,
a contradiction.
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4.2 Proof of Theorem 4.4

We start by Ąxing notation and proving some preparatory lemmas in section 4.2.1. Then
we prove the theorem with the use of two crucial propositions, Proposition 4.10 and 4.11.
In the next section we prove Proposition 4.10. Then we state several technical embedding
lemmas in the next section 4.2.4. Finally, we prove Proposition 4.11 in the last section.

4.2.1 Preliminaries

We shall switch freely between a graph H and its corresponding cluster graph H. For
example A ⊆ V (H) may as well denote a cluster in an original graph, as A ∈ V (H)
a vertex in the corresponding cluster graph. We shall freely use the term clusters in a
cluster graph H to denote vertices of H. If S ⊆ V (H) denotes a set of clusters, then
√S denotes the corresponding union of vertices in the original graph H. If A ∈ V (H)
is a cluster and S ⊆ V (H) a set of clusters, then deg(A,S) denotes the average degree
of vertices in A to

√S and deg(A) stands short for deg(A, V (H)).
We shall use the following notation. The class of all trees of order k is denoted as Tk.

For a graph G and two sets A ∈ V (G) and B ∈ V (G) let G[A, B] denote the subgraph
of G induced by all edges with one endpoint in A and the other in B.

DeĄnition 4.8. Let r ≤ 1/2. We say that a graph H is an r-skew LKS-graph with
parameters (k, η, ε, d) if there exists a partition ¶L1, . . . , LmL

, S1, . . . , SmS
♢ of V (H) sat-

isfying the following

1. mL ≥ (1 + η)mS,

2. all sets Li have the same size and all sets Si have the same size,

3. r♣Sj♣ = (1− r)♣Li♣ for all i, j,

4. each (Li, Lj), i, j ∈ [mL] and each (Li, Sj), i ∈ [mL], j ∈ [mS] is an ε-regular pair
of density either 0 or at least d,

5. there are no edges inside the sets and no edges between Si and Sj for i ̸= j,

6. average degree of vertices in each Li is at least (1 + η)k.

We call the sets Li, i ∈ [mL], the L-clusters. Similarly, we call the sets Si, i ∈ [mS],
the S-clusters.

Let H be the graph with vertex set ¶L1, . . . , LmL
, S1, . . . , SmS

♢ and with an edge
(Li, Lj), (Li, Sj) whenever (Li, Lj) or (Li, Sj), respectively forms an ε-regular pair of pos-
itive density in H. Observe that for any edge (Li, Lj) we have deg(Li, Lj) = deg(Lj, Li),
but for any edge (Li, Sj) we have r · deg(Li, Sj) = (1 − r) · deg(Sj, Li). We call H the
r-skew LKS-cluster graph. We use a dot instead of an explicit parameter when the value
of the parameter is not relevant in the given context.

Proposition 4.9. Let H be an r-skewed LKS graph of order n with parameters (·, ·, ε, ·)
and let H be its corresponding cluster graph.

1. Let C and D be an L-cluster and an S-cluster of H, respectively. Then ♣C♣ ≤
n/♣V (H)♣ and ♣D♣ ≤ n

r♣V (H)♣ .
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2. If v ∈ V (H) is an ultratypical vertex and S ⊆ V (H), then deg(v,
√S) ≥

deg(C,S)− 2
√

εn/r, where C is the cluster of H containing v.

Proof.

1. The Ąrst inequality follows from the fact that the size of L-clusters is always at
most the size of S-clusters. Then we compute ♣D♣ = 1−r

r
♣C♣ ≤ n

r♣V (H)♣ .

2. If v is ultratypical, there are at most
√

ε♣V (H)♣ clusters D in H such that v is
not typical to D. Denote by D the set of those clusters. Then by (1) we have
♣√D♣ ≤ ♣D♣ · n/(r♣V (H)♣) ≤ √εn/r. Then

deg(v,
⋃

S) ≥ deg(v,
⋃

(S \ D))

≥ deg(C,
⋃

(S \ D))− εn

≥ deg(C,
⋃

S)− ♣
⋃

D♣ − εn

≥ deg(C,
⋃

S)− 2
√

εn/r .

Finally, we state two propositions that will be proved in Sections 4.2.3 and 4.2.5,
respectively. The Ąrst proposition says that every LKS-graph contains one the four con-
Ągurations, while the second proposition asserts that occurrence of these conĄgurations
implies containment of a given tree. Note that the Ąrst proposition is concerned only
with the structure of the cluster graph, not the underlying graph, and could be stated
in terms of weighted graphs instead.

Proposition 4.10. Let H be a r′-skew LKS-graph H with parameters (k, η, ·, ·) and let
H be the corresponding cluster graph. We denote by L and S, respectively, its set of L-
clusters and S-clusters, respectively. For any numbers a1, a2, b1, b2 ∈ N0 with a2+b1 = r̃k,
r̃ ≤ r′, there is a matching M in H[L,S] and two adjacent clusters X, Y ∈ V (H) such
that, setting SM = S ∩ V (M) and S1 = ¶Z ∈ S : deg(Z) ≥ (r̃ + r′η)k♢ \ SM, one of the
four following configurations occurs.

A) deg(X,S1 ∪ SM) ≥ a2 · (1− r̃)/r̃ + ηk/4, and deg(Y,L) ≥ r̃k + ηk/4,

B) r̃a1 > (1− r̃)a2, deg(X,S1 ∪ SM ∪ L) ≥ k + ηk/4 and deg(Y,L) ≥ r̃k + ηr′k/4,

C) r̃a1 ≤ (1− r̃)a2, deg(X,S1 ∪ SM ∪ L) ≥ k + ηk/4 and deg(Y,L) ≥ b1 + ηr′k/4,

D) r̃a1 ≥ (1 − r̃)a2, b1 ≤ r̃2k/(1 − r̃), deg(X,SM ∪ L) ≥ k + ηk/4 and deg(Y,L) ≥
b1 + ηk/4, and moreover, the neighbourhood of X does not contain both endpoints
of any edge from M.

Proposition 4.11. For each δ, q, d > 0 and r̃, r′ ∈ Q+ with r̃ ≤ r′ ≤ 1/2 there is
ε = ε(δ, q, d, r′) > 0 such that for any Ñmax ∈ N there is a β = β(δ, q, r′, ε, Ñmax) > 0
and an n0 = n0(δ, q, r̃, β) ∈ N such that for any n ≥ n0 and k ≥ qn the following
holds.Let D = (WA, WB,DA,DB) be an βk-fine partition of a tree T ∈ Tk with colour
classes T1 and T2 such that ♣T1♣ = r̃k. Let H be an r′-skewed LKS-graph of order n,with
parameters (k, δ, ε, d), let H be its corresponding cluster graph with ♣V (H)♣ ≤ Ñmax and
L,S ⊆ V (H) are sets of L-clusters and S-clusters, respectively.Let M be a matching
in H, let SM = S ∩ V (M), S1 := ¶C ∈ S \ V (M) : deg(C) ≥ (1 + δ)r̃k♢. Let A and B
be two clusters of H such that AB ∈ E(H) and one of the following holds.
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A) deg(A,S1 ∪ SM) ≥ a2
1−r̃

r̃
+ δk and deg(B,L) ≥ (r̃ + δ)k

B) r̃♣V (DA) ∩ V (T2)♣ ≥ (1− r̃)♣V (DA) ∩ V (T1)♣,
deg(A,S1 ∪ SM ∪ L) ≥ (1 + δ)k, and deg(B,L) ≥ (r̃ + δ)k,

C) r̃♣V (DA) ∩ V (T2)♣ ≤ (1− r̃)♣V (DA) ∩ V (T1)♣,
deg(A,S1 ∪ SM ∪ L) ≥ (1 + δ)k, and deg(B,L) ≥ ♣V (DB) ∩ V (T1)♣+ δk,

D) r̃♣V (DA) ∩ V (T2)♣ ≥ (1− r̃)♣V (DA) ∩ V (T1)♣, ♣V (DB) ∩ V (T1)♣ ≤ r̃2

(1−r̃)
k

deg(A,SM ∪L) ≥ (1 + δ)k, deg(B,L) ≥ ♣V (DB)∩ V (T1)♣+ δk, and moreover, the
neighbourhood of A does not contain both endpoints of any edge from M.

Then T ⊆ H.

4.2.2 Proof of the theorem

Suppose r, q and η are Ąxed. If r = 1/2, then set r′ := r ∈ Q, s := 1, and t :=
2. Otherwise, let ρ := 1/2 − r > 0 and r′ ∈ Q be such that r ≤ r′ ≤ r(1 + ηρq

12
)

with r′ = s/t, s, t ∈ N and t ≤ 12/(ηρqr). Observe that r′ ≤ 1/2. Let d := η2q2r′

100
.

Let ε = min¶ηd2q2

40
, 1

t
εP 4.11(

ηr′q
400

, q, d/2, r′)♢. Lemma 2.6 (Szemerédi regularity lemma)
with input parameter εL2.6 := ε and Nmin := 1/ε outputs nR, Nmax ∈ N. Set β :=
βP 4.11(

ηr′q
400

, q, r′, t · ε, tNmax). Let n0 = max¶2nR, 2t · Nmax/ε, n0,P 4.11(
ηr′q
400

, q, r′, β)♢ and
let n ≥ n0. Suppose k ≥ qn is Ąxed. Let G be any graph on n vertices that has at least
rn vertices of degree at least (1 + η)k.

We Ąrst Ąnd a subgraph H of G of size n′′ ≥ (1− ηq/2)(1− 2ε)n which is an r′-skew
LKS-graph with parameters (k, ηq

100
, t · ε, d

2
) and construct the corresponding LKS-cluster

graph H.
Erase η · qn/2 vertices from the set of vertices that have degree smaller than (1 + η)k

and let G′ be the resulting graph of order n′ = n(1 − ηq/2). Observe that for all
v ∈ V (G′), we have degG′(v) ≥ degG(v) − ηk/2 and hence at least rn ≥ r′n′(1 + ηq/4)
vertices of G′ have degree at least (1 + η/2)k.

We apply Szemerédi regularity lemma (Lemma 2.6) on G′ and obtain an ε-regular
equitable partition V (G′) = V0 ∪ V1 ∪ · · · ∪ VN . Erase all edges within sets Vi, between
irregular pairs, and between pairs of density lower than d. Hence, we erase at most

N ·
⎞

n′/N
2

⎡

≤ ε(n′)2/2 edges within the sets Vi, at most εN2 ·
⎞

n′

N

⎡2
= ε(n′)2 edges in

irregular pairs, and at most
⎞

N
2

⎡

·d ·
⎞

n′

N

⎡2 ≤ d
2
· (n′)2 edges in pairs of density less than d.

In total we have thus erased less than d · (n′)2 = η2q2r′

100
· (n′)2 edges.

Call a set Vi an L-set if the average degree of its vertices is at least (1 + ηq/4)k and
otherwise an S-set. We have at least (1 + ηq

20
)r′N L-sets. Indeed, during the erasing

process, less than ηr′qn′/6 vertices dropped their degree by more than ηk/8. Therefore,
now there are at least (1 + ηq

12
)r′n′ vertices of degree at least (1 + 3η/8)k. By regularity,

in each S-set Vi there are at most ε♣Vi♣ of those vertices, as otherwise they form a
subset of Vi of substantial size and thus the S-set Vi would have average degree at least
(1 + 3η/8)k − εn′ > (1 + η/4)k. So we can have at most εn′ vertices of degree at least
(1+3η/8)k distributed among all S-sets and at most εn′ of them contained in V0. Hence,
at least (1 + ηq

20
)r′n′ vertices of degree at least (1 + 3η/8)k must be contained in L-sets,

producing thus at least (1 + ηq
20

)r′N L-sets.
We subdivide any L-set into t − s sets of the same size, which we call L-clusters,

adding at most t− s− 1 leftover vertices to the garbage set V0. Similarly, we subdivide
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any S-set into s sets, which we call S-clusters. In this way we have (1 − r′)♣C♣ = r′♣D♣
for any L-cluster C, and any S-cluster D. By Lemma 2.5, if (Vi, Vj) is ε-regular and
C ⊆ Vi and D ⊆ Vj are L or S clusters, then (C, D), is a ε′-regular pair for ε′ = tε with
density at least d′ := d − ε. Observe that by the choice of n0, we added in total less
than t · N ≤ εn′ vertices to the garbage set V0. We delete at most 2εn′ vertices of the
enlarged set V0. Any L-cluster is a relatively large subset of the L-set it comes from,
and thus basically inherits the average degree of the set it comes from. Together with
the deletion of the enlarged garbage set, we obtain that each L-cluster has now average
degree at least (1 + ηq/4)k − 3εn′ ≥ (1 + ηq/5)k.

Denote by mL the number of L-clusters and by mS the number of S-clusters. We
have mL ≥ (1 + ηq

20
)r′N · (t− s), as each L-set divided in t− s L-clusters. Similarly, we

obtain mS < (1− r′)sN . Therefore,

mL ≥ (1 + ηq/100)mL/2 + (1− ηq/100)(1 + ηq/20) · r′N · (t− s)/2

> (1 + ηq/100)mL/2 + (1 + ηq/100) · s
t
· mS

s(1− s/t)
· (t− s)/2

= (1 + ηq/100)mL/2 + (1 + ηq/100) · mS

t− s
· (t− s)/2

= (1 + ηq/100)(mL + mS)/2 .

Finally, we delete all edges between S-clusters. We denote by L the set of vertices
contained in L-clusters and by S the set of vertices contained in S-clusters.

Let H be the resulting graph. By construction, it is an r′-skew LKS-graph of order n′′,
where (1 − 2ε)n′ ≤ n′′ ≤ n′, with parameters (k, ηq

100
, ε′, d/2). The vertex set of the

corresponding cluster graph H consists of the L- and S-clusters deĄned above, with edges
corresponding to ε′-regular pairs of density at least d/2 in H. Observe that ♣V (H)♣ ≤
t ·Nmax.

After having processed the host graph, we turn our attention to the tree. Let T be
any tree of order k with colour classes T1 and T2 and ♣T1♣ ≤ rk ≤ r′k. Pick any vertex
R ∈ V (T ) to be the root of T . Applying Lemma 2.9 on T with parameter ℓP 2.9 := βk, we
obtain its βk-Ąne partition D = (WA, WB,DA,DB). Without loss of generality, assume
that WA ⊆ V (T2). Let r̃ := ♣V (T1) \ WB♣/k. We then apply Proposition 4.10 with
ηP 4.10 := ηq/100, r′

P 4.10 := r′, kP 4.10 := k, nP 4.10 := n′′, HP 4.10 := H, for vu ∈ H, a1 :=
♣V (DA)∩ V (T2)♣, a2 := ♣V (DA)∩ V (T1)♣, b1 := ♣V (DB)∩ V (T1)♣, b2 := ♣V (DB)∩ V (T2)♣,
r̃P 4.10 := r̃. We obtain a matching M ⊆ E(H) and two adjacent clusters A, B ∈ V (H)
satisfying one of four conĄgurations.

For any of these four possible conĄgurations, Proposition 4.11 with input δP 4.11 :=
ηr′q
400

, qP 4.11 := q, dP 4.11 := d/2, εP 4.11 := ε′, Ñmax,P 4.11 := tNmax, HP 4.11 := H, HP 4.11 :=
H, and further input as in Proposition 4.10, gives an embedding of T in H ⊆ G, proving
Theorem 4.4.

4.2.3 Proof of Proposition 4.10

We will prove Proposition 4.10 in several steps. We start by deĄning the desired matching
M as well as several other subsets of H.

Let M ⊆ H[L,S] be a matching minimising the number of vertices in the set S0 :=
¶X ∈ S : deg(X) < (r̃ + r′η/2)k♢. It follows that S1 = S \ (SM ∪ S0).

We deĄne B ⊆ V (M) as the set of those clusters X, for which there is an alter-
nating path P = X1X2 . . . Xk, such that X1 ∈ S0, Xk = X, X2i ∈ L, X2i+1 ∈ SM ,
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LB

SB S0

LA ∩ V (M)

SA

LA \ V (M)
B

S1

Figure 4.3: Various subsets of H used in the proof of Proposition 4.10.

¶X2i, X2i+1♢ ∈M. Also let LB = L∩B and SB = SM∩B. Then we deĄne A = V (M)\B,
LA = L \ LB, SA = SM \ SB.

Claim 4.12. For all X ∈ SB we have deg(X) < (r̃ + r′η/2)k. Also, there are no edges
between clusters from LA and S0 ∪ SB.

Proof. If the Ąrst statement was not true, the symmetric diference of M and an alter-
nating path between X and a vertex in S0 would yield a matching contradicting the
choice of M as a matching minimising the size of S0.

If the second statement was not true, we would have an alternating path ending at
X which is a contradiction with the deĄnition of LA.

Now we are going to deĄne yet another subsets of L based on the average degrees of
the clusters.

L∗ := ¶X ∈ L : deg(X,L) ≥ (r̃ + r′η/2)k♢,
L+ := ¶X ∈ L \ L∗ : deg(X,SM ∪ S1) ≥ (1− r̃ + η/2)k♢.

Next, we deĄne L∗
A := L∗ ∩ LA and L+

A := L+ ∩ LA. We have L∗
A = LA \ L+

A by
Claim 4.12.We deĄne L+

B and L∗
B in a similar way. Finally, let

N = N(L∗
A) ∩ L.

Now suppose that none of the four conĄgurations from statement of the theorem
occurs in the cluster graph H. We are going to gradually constrain the structure of H
until we Ąnd a contradiction.

Claim 4.13. Let X and Y be two clusters such that X ∈ L and deg(X,S0) = 0 and
deg(Y,L) ≥ (r̃ + r′η/2)k. Then X and Y are not connected by an edge.

Proof. If there is X ∈ L such that deg(X,S0) = 0, then we have deg(X,L∪S1 ∪ SM) ≥
(1 + η)k. Now suppose that there is an edge between such a cluster X and a cluster Y
with deg(Y,L) ≥ (r̃ + r′η/2)k. If r̃a1 > (1 − r̃)a2, we have found ConĄguration B. If,
on the other hand, r̃a1 ≤ (1− r̃)a2, recall that b1 ≤ a2 + b1 = r̃k, meaning that we have
found ConĄguration C.

Corollary 4.14. We have:

1. e(LA,L∗ ∪ S1) = 0, thus N is a subset of LB,

2. ∀X ∈ N : deg(X,L) < (r̃ + r′η/2)k,
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3. ∀X ∈ SA : deg(X) = deg(X,L) < (r̃ + r′η/2)k.

Proof.

1. Suppose that there is an edge between X ∈ LA and Y ∈ L∗ ∪ S1. From Claim
4.12 we get that deg(X,S0) = 0. From the deĄnition of L∗ and S1 we have
deg(Y,L) ≥ (r̃ + r′η/2)k. Thus we can apply Claim 4.13 for X and Y .

2. Each vertex Y ∈ N has a neighbour X ∈ L∗
A. If deg(Y,L) ≥ (r̃ + r′η/2)k we are

in the situation of the Ąrst part of this claim.

3. Each vertex Y ∈ SA is matched to a vertex X ∈ LA. If deg(Y,L) ≥ (r̃ + r′η/2)k,
we are, yet again, in the situation of the Ąrst part of the claim.

Claim 4.15. Every cluster in N has average degree at least (r̃ + η/2)k in S0.

Proof. Suppose that it is not so. Then we have a cluster Y ∈ N such that

deg(Y,S1 ∪ SM ∪ L) ≥ (1 + η)k − (r̃ + η/2)k

≥ (1− r̃ + η/2)k .

Now we consider separately three cases:

1. Suppose that r̃a1 ≤ (1− r̃)a2. Then either

deg(Y,L) ≥ b1 + ηk/4,

which leads to the ConĄguration C (consider Y and its neighbour in L∗
A), or we

have

deg(Y,S1 ∪ SM) = deg(Y,S1 ∪ SM ∪ L)− deg(Y,L)

≥ (1− r̃)k + ηk/2− (b1 + ηk/4)

=
1− r̃

r̃
r̃k − b1 + ηk/4

=
1− r̃

r̃
(b1 + a2)− b1 + ηk/4

=
1− 2r̃

r̃
b1 +

1− r̃

r̃
a2 + ηk/4

≥ 1− r̃

r̃
a2 + ηk/4,

where we used the bound on the average degree of Y and then the facts that
b1+a2 = r̃k and r̃ ≤ r′ ≤ 1/2. This, on the other hand, leads to the ConĄguration A
(again, consider Y and its neighbour in L∗

A).

2. Suppose that r̃a1 > (1− r̃)a2 and b1 ≤ r̃2

1−r̃
k. Following the same considerations as

in the previous case we get that either deg(Y,L) ≥ b1 + ηk/4 or deg(Y,S1 ∪SM) ≥
1−r̃

r̃
a2 + ηk/4. The second case leads, again, to the ConĄguration A. We now

proceed with the Ąrst case.
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Let X be a neighbour of Y in L∗
A. From Claim 4.12 we have deg(X,S0) = 0 and

from Corollary 4.14.1 we have deg(X,S1) = 0, thus

deg(X,L ∪ SM) = deg(X) ≥ (1 + η)k > k + ηk/4.

Moreover, all the matching edges containing clusters from S ∩ N(X) must have
both ends in the set A because there are no edges between vertices from L∩A and
S ∩ B (Claim 4.12). On the other hand, all neighbours of X in L have to be in B
(Corollary 4.14 (1)), so all matching edges containing vertices from L ∩N(X) are
in B. Thus, all of the assumptions of ConĄguration D for X and Y are satisĄed.

3. Finally we are left with the case r̃a1 > (1 − r̃)a2 and b1 > r̃2

1−r̃
k. Note that then

we have

a2 = r̃k − b1 < r̃k − r̃

1− r̃
r̃k = (1− r̃

1− r̃
)r̃k = (1− 2r̃)

r̃

1− r̃
k.

Now either

deg(Y,L) ≥ r̃k + r′ηk/4,

or

deg(Y,S1 ∪ SM) = deg(Y,S1 ∪ SM ∪ L)− deg(Y,L)

≥ (1− r̃)k + ηk/2− (r̃k + r′ηk/4)

≥ (1− 2r̃)k + ηk/4

=
1− r̃

r̃
(1− 2r̃)

r̃

1− r̃
k + ηk/4

≥ 1− r̃

r̃
a2 + ηk/4.

The Ąrst option leads to ConĄguration B while the second one leads to ConĄgura-
tion A.

After restricting the structure of H we are ready to derive a contradiction by combin-
ing several properties of H together. At Ąrst we estimate the size of the set LA. Recall
that we have ♣L♣ ≥ (1 + η)♣S♣, thus ♣L♣ > ♣S♣. We also know that ♣LB♣ = ♣SB♣, because
the two sets are matched in M. This means that

♣LA♣ = ♣L♣ − ♣LB♣ > ♣S♣ − ♣SB♣ = ♣SA♣+ ♣S0♣+ ♣S1♣. (4.6)

Now we proceed by bounding the size of the set N .

Lemma 4.16. Suppose that the set L∗
A (and thus also N ) is nonempty. Then the

following inequality holds:

♣N ♣(r̃ + r′η/2) > ♣S0♣(1− r̃ + η/2). (4.7)
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Proof. We estimate the number of edges between L+
A and SA. For Y ,Z ⊆ V (H), we set

w⃗(Z,Y) :=
√

Z∈Z deg(Z,Y). On one hand we have

w⃗(L+
A,SA) =

∑

Z∈L+
A

deg(Z,S) ≥ ♣L+
A♣(1− r̃ + η/2)k,

because w⃗(L+
A,SB ∪ S0) = 0 (Claim 4.12) and w⃗(L+

A,S1) = 0 (Corollary 4.14). On the
other hand we have

w⃗(L+
A,SA) =

∑

Z∈L+
A,W ∈SA

deg(Z, W )

=
∑

Z∈L+
A,W ∈SA

1− r′

r′ deg(W, Z)

=
1− r′

r′ w⃗(SA,L+
A)

≤ 1− r′

r′ (♣SA♣(r̃ + r′η/2)k − w⃗(SA,L∗
A))

≤ (1− r′)♣SA♣(1 + η/2)k − w⃗(SA,L∗
A)

≤ ♣SA♣(1 + η/2)(1− r̃)k − w⃗(L∗
A,SA) ,

because all the clusters from SA (if there are any) have their average degree bounded by
(r̃ + r′η/2)k (Corollary 4.14), and r̃ ≤ r′ ≤ 1/2. After combining the inequalities we get

♣L+
A♣(1− r̃ + η/2)k ≤ ♣SA♣(1− r̃ + η/2)k − w⃗(L∗

A,SA). (4.8)

We continue by estimating the number of edges between L∗
A and N . On one hand

we have

w⃗(L∗
A,N ) = w⃗(N ,L∗

A) ≤ ♣N ♣(r̃ + r′η/2)k

due to Corollary 4.14 (2). On the other hand we have

w⃗(L∗
A,N ) = w⃗(L∗

A, V (H))− w⃗(L∗
A,SA)− w⃗(L∗

A,S1 ∪ SB ∪ S0)

= w⃗(L∗
A, V (H))− w⃗(L∗

A,SA)

≥ ♣L∗
A♣(1 + η)k − w⃗(L∗

A,SA) ,

because there are neither edges between L∗
A and S1 (Corollary 4.14 (1)), nor edges

between L∗
A and SB ∪ S0 (Claim 4.12) and clusters in L have large degree.

By combining the two inequalities we get

♣L∗
A♣(1 + η)k − w⃗(L∗

A,SA) ≤ ♣N ♣(r̃ + r′η/2)k. (4.9)

Combining Inequalities (4.8), (4.9) and (4.6) in this order we get:

♣N ♣(r̃ + r′η/2)k ≥ ♣L∗
A♣(1 + η)k − w⃗(L∗

A,SA)

≥ ♣L∗
A♣(1 + η/2)k + ♣L+

A♣(1− r̃ + η/2)k − ♣SA♣(1− r̃ + η/2)k

= ♣LA♣(1− r̃ + η/2)k + ♣L∗
A♣r̃k − ♣SA♣(1− r̃ + η/2)k

= ♣L∗
A♣r̃k + (♣LA♣ − ♣SA♣)(1− r̃ + η/2)k

> ♣L∗
A♣r̃k + (♣S0♣+ ♣S1♣)(1− r̃ + η/2)k

≥ ♣S0♣(1− r̃ + η/2)k

which concludes the proof.
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Corollary 4.17. The set LA is empty.

Proof. Suppose that N (and thus also L∗
A) is nonempty. Then on one hand we have

w⃗(N ,S0) =
1− r′

r′ w⃗(S0,N ) ≤ 1− r′

r′ ♣S0♣(r̃ + r′η/2)k ≤ ♣S0♣(1 + η/2)(1− r′)k , (4.10)

due to the deĄnition of S0 and the fact r̃ ≤ r′. On the other hand we have

w⃗(N ,S0) ≥ ♣N ♣(r̃ + η/2)k (4.11)

due to Claim 4.15. After combining the inequalities we get that

♣N ♣(r̃ + η/2) ≤ ♣S0♣(1− r′)(1 + η/2) ≤ ♣S0♣(1− r̃)(1 + η/2). (4.12)

Combining with Lemma 4.16 we get

♣S0♣(1− r̃ + η/2) < ♣N ♣(r̃ + r′η/2) < ♣N ♣(r̃ + η/2) ≤ ♣S0♣(1− r̃)(1 + η/2).

which gives a contradiction, because

1− r̃ + η/2 > 1− r̃ + η/2− r̃η/2 = (1− r̃)(1 + η/2).

Thus L∗
A and N are empty.

Now suppose that L+
A = LA is nonempty. Then on one hand we have

w⃗(L+
A,SA) =

1− r′

r′ w⃗(SA,L+
A)

<
1− r′

r′ ♣SA♣(r̃ + r′η/2)k

≤ ♣SA♣(1 + η/2)(1− r′)k ,

because of Corollary 4.14 (3) and on the other hand we have

w⃗(L+
A,SA) = w⃗(L+

A,SM ∪ S1)

≥ ♣L+
A♣(1− r̃ + η/2)k

= ♣LA♣(1− r̃ + η/2)k

≥ ♣SA♣(1− r′ + η/2)k

> ♣SA♣(1 + η/2)(1− r′)k ,

where we used the deĄnition of L+
A, Corollary 4.14 (1), Claim 4.12, Inequality (4.6), and

the fact that r̃ ≤ r′.

Combining the inequalities gives a contradiction. Thus, the set LA has to be empty.

From Corollary 4.17 it follows that all L-clusters are in LB and thus are matched to
SM , i.e., ♣L♣ = ♣SM ♣ ≤ ♣S♣, which contradicts our assumption that ♣L♣ > ♣S♣.
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4.2.4 Embedding

We call a pair (F, R) an anchored τ forest if F is a forest (possibly consisting of a single
tree), R ⊆ V (F1), where F1 is one of the colour classes of F , F − R decomposes into
components of size at least two and at most τ , each component K in F −R is adjacent
in F to at least one and at most two vertices from R and each two vertices in R are of
distance at least 4. We shall use the notation K ∈ F − R to denote that the tree K is
one of the components of F −R.

First we state a proposition that will allow us to use matching edges in our r-skewed
LKS-cluster graph to embed part of our tree T .

SpeciĄcally, in Proposition 4.18 we are given an anchored forest (F, R), an r-skewed
LKS-graph which contains a cluster A with some nice average degree to some L − S-
matching, and an injective mapping of R on ultratypical vertices of A. We want to
extend it to an embedding of F .

Proposition 4.18. For all η, d > 0 and r ∈ Q+, 0 < r ≤ 1/2, there is an ε = ε(η, d, r) >
0 such that for any Ñmax ∈ N there is a β = β(η, r, ε, Ñmax) > 0 such that for all n ∈ N

the following holds.Let (F, R) be an anchored βn-forestwith colour classes F1 and F2 such
that R ⊆ F2 and for each component K ∈ F −R, we have ♣F1∩K♣ ≤ ♣F2∩K♣. Let H be
an r-skewed LKS-graph of order n with parameters (·, ·, ε, d) with a corresponding cluster
graph H of order at most Ñmax. Let U ⊆ V (H) and let M ⊆ E(H) be a matching in H
between L-clusters and S-clusters.

If for A ∈ V (H) we have

deg(A,S ∩ V (M)) ≥ 1− r

r
♣F2♣+

∑

C⊆S : CD∈M

max¶♣U ∩ C♣, 1− r

r
♣U ∩D♣♢+ ηn ,

then for any injective mapping of R on ultratypical vertices of A, there is an embedding φ
of F avoiding U and extending this mapping such that φ(V (F1)) ⊆ S∩V (M), φ(V (F2)\
R) ⊆ L ∩ √V (M), and V (F2) are mapped on ultratypical vertices. Moreover, for any
cluster C ∈ V (H) where we embedded vertices from F−R it holds that ♣C \(U∪φ(F ))♣ ≥
rη/8♣C♣.

Next, we state a proposition allowing us to use high average degree of some clusters
to embed further part of our tree T .

SpeciĄcally, in Proposition 4.19 we are given an anchored forest (F, R), an r-skewed
LKS-graph which contains a cluster A with big enough average degree to a set of clusters
with high average degree, and an injective mapping of R on ultratypical vertices of A.
We want to extend it to an embedding of F .

When using the proposition, we always set B to be the set of L-clusters in (1) and
the set of S1-clusters in (2).

Proposition 4.19. For all η, d > 0 and 0 < r ≤ 1/2, there is an ε = ε(η, d, r) > 0
such that for any Ñmax ∈ N there is a β = β(η, r, ε, Ñmax) > 0 such that for all n ∈ N

the following holds. Let (F, R) be an anchored βn-forest with colour classes F1 and F2

such that R ⊆ F2. Let H be an r-skewed LKS-cluster graph with parameters (·, ·, ε, d)
of order n with an associated cluster graph H of order at most Ñmax. Let U ⊆ V (H)
and let B ⊆ V (H) be a set of clusters. Let φ : R → A with A ∈ V (H) be an injective
mapping on ultratypical vertices.

46



1. If deg(A,B) ≥ ♣F1♣ + ♣
√B ∩ U ♣ + ηn, then we can extend φ to N(R) so that

φ(N(R)) are ultratypical vertices in
√B \ U and find a set W = W1∪̇W2∪̇ . . . ⊆

√B\(U∪φ(R∪N(R))) of reserved vertices such that ♣Wi♣ = ♣(F1∩Ki)\N(R)♣, with
Ki ∈ F−R and such that Wi lies in the same cluster as φ(Ki∩N(R)) and for each
cluster C ∈ B with C ∩φ(N(R)) ̸= ∅ we have ♣C \ (U ∪W ∪φ(N(R)))♣ ≥ rη/8 · ♣C♣
.

Moreover, for any set Ũ ⊆ V (G) \ (U ∪W ∪ φ(R ∪ N(R))), for which deg(B) ≥
♣F1♣ + ♣F2♣ + ♣U ∪ Ũ ♣ + ηn for each B ∈ B and such that for any C ∈ V (H) with
C ∩ Ũ ̸= ∅ we have ♣C \ (U ∪W ∪ Ũ ∪ φ(N(R)))♣ ≥ rη/8 · ♣C♣, we can further
extend φ to the whole F avoiding U ∪ Ũ such that φ(F1) ⊆

√B. Moreover, the
extension φ is such that for any cluster C ∈ V (H) with C∩φ(F − (R∪N(R)) ̸= ∅,
we have ♣C \ (Ũ ∪ U)♣ ≥ rη/8 · ♣C♣.

2. If deg(A,B) ≥ ♣F1♣ + ♣
√B ∩ U ♣ + ηn and deg(B, V (H) \ B) ≥ ♣F2♣ + ♣U ♣ + ηn

for each B ∈ B, then we can extend φ to F in V (G) avoiding U and such that
φ(V (F1)) ⊆

√B, φ(V (F2)) ⊆
√

NH(B) \ B, and V (F2) are mapped on ultratypical
vertices. Moreover, the embedding φ is such that for any cluster C ∈ V (H) with
C ∩ φ(F −R) ̸= ∅, we have ♣C \ (φ(F ) ∪ U)♣ ≥ rη/8 · ♣C♣.

We at Ąrst prove Proposition 4.18.

Proof of Proposition 4.18. Given η, d > 0 and r ∈ Q set ε = min¶(ηr
12

)2, drη
100
♢.For any

Ñmax ∈ N set β = εrη
4Ñmax

.

We shall deĄne a set Ũ of vertices used for the embedding process. At the beginning
Ũ = φ(R). At any time of the embedding process, let φ be the partial embedding of
F . We shall embed one by one each component K ∈ F − R. The embedding φ will be
deĄned in such a way that φ(K ∩ F1) ⊆ S and φ(K ∩ F2 \ R) ⊆ L. During the whole
embedding process, we shall ensure that the following holds

deg(A,S ∩ V (M)) ≥
1− r

r
(♣F2♣ − ♣φ(F2)♣) +

∑

C⊆S : CD∈M

max¶♣(U ∪ Ũ) ∩ C♣, 1− r

r
♣(U ∪ Ũ) ∩D♣♢+ ηn .

This holds at the beginning when Ũ = R.
For each next K ∈ F − R to be embedded, let RK be the vertices in R adjacent to

K (at least one, at most two). Let S ′ ⊆ S ∩ V (M) be such that both φ(RK) are typical
to each cluster C ∈ S ′. By Lemma 2.7 we have that ♣S ∩M♣ − ♣S ′♣ ≤ 2

√
ε♣V (H)♣ and

thus similarly as in the proof of Proposition 4.9 we can calculate for xi ∈ RK , i = 1, 2
that deg(φ(xi),

√S ′) ≥ deg(A,S ∩ V (M))− 3
√

εn/r and thus

deg(φ(xi),
⋃

S ′)

≥ 1− r

r
(♣F2♣ − ♣φ(F2)♣) +

∑

C⊆S : CD∈M

1− r

r
♣Ũ ∩D♣

+
∑

C⊆S : CD∈M

max¶♣U ∩ C♣, 1− r

r
♣U ∩D♣♢+ ηn− 3

√
εn/r

≥ 1− r

r
(♣F2♣ − ♣φ(F2)♣) +

∑

C⊆S : CD∈M

max¶♣(U ∪ Ũ) ∩ C♣, 1− r

r
♣(U ∪ Ũ) ∩D♣♢+

3ηn

4

≥
∑

C⊆S′ : CD∈M

⎠

max¶♣(U ∪ Ũ) ∩ C♣, 1− r

r
♣(U ∪ Ũ) ∩D♣♢+ 3ηn/(4♣S ′♣)

⎜

.
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Then there is a C ∈ S ′ with CD ∈M such that

deg(φ(xi), C) ≥ max¶♣(U ∪ Ũ) ∩ C♣, 1− r

r
♣(U ∪ Ũ) ∩D♣♢+ 3ηn/(4♣S ′♣) .

Thus,

♣C♣ −max¶♣(Ũ ∪ U) ∩ C♣, 1− r

r
♣(Ũ ∪ U) ∩D♣♢

≥ deg(φ(xi, C))−max¶♣(Ũ ∪ U) ∩ C♣, 1− r

r
♣(Ũ ∪ U) ∩D♣♢ (4.13)

≥ 3ηn/(4♣S ′♣)

≥ 1− r

r
βn + ηn/(2♣V (H)♣)

≥ ♣F1 ∩K♣+ ηr♣C♣/2 , (4.14)

where the third inequality follows from the deĄnition of β and the last inequality follows
from Proposition 4.9 (1). Similarly we have

♣D \ (Ũ ∪ U)♣ ≥ r

1− r
(♣C♣ −max¶♣(Ũ ∪ U) ∩ C♣, 1− r

r
♣(Ũ ∪ U) ∩D♣♢)

≥ βn +
r

1− r
ηn/(2♣V (H)♣)

≥ ♣F2 ∩K♣+ ηr♣D♣/2 , (4.15)

where we again use the deĄnition of β and Proposition 4.9 (1).
In particular, in the neighbourhood of each vertex ui ∈ φ(RK), i = 1, 2, there are

at least ♣F1 ∩ K♣ unused vertices of C \ U that are typical w.r.t. D \ (Ũ ∪ U). Let
φ(N(xi) ∩K) = vi, i = 1, 2, be such vertices. Hence,

deg(vi, D \ (Ũ ∪ U)) ≥ (d− ε)♣D \ (Ũ ∪ U)♣ ≥ (d− ε)rη♣D♣/8 > 3ε♣D♣
for i = 1, 2. Observe that ♣K♣ ≤ βn < εrn

♣V (H)♣ ≤ ε min¶♣C♣, ♣D♣♢. We can thus use

Lemma 2.14 with TL2.14 := K, X ′
L2.14 := C \ (Ũ ∪ U), Y ′

L2.14 := D \ (Ũ ∪ U), RL2.14 :=
¶N(xi), i = 1, 2♢ εL2.14 := ε, αL2.14 := 16ε

ηr
, and dL2.14 := d to embed K in C ∪ D with

φ(F1 ∩K) ⊆ C \ (Ũ ∪ U) ⊆ S and φ(F2 ∩K \R) ⊆ D \ (Ũ ∪ U) ⊆ L. Add φ(K) to Ũ .
From (4.14) and (4.15), we now have that ♣C \ (Ũ ∪U)♣ ≥ rη/8♣C♣, and ♣D \ (Ũ ∪U)♣ ≥
rη/8♣D♣. Observe also that for the partial embedding φ we have

deg(A,S ∩ V (M))

≥ 1− r

r
♣F2♣+

∑

C⊆S : CD∈M

max¶♣U ∩ C♣, 1− r

r
♣U ∩D♣♢+ ηn

≥ 1− r

r
((♣F2♣ − ♣φ(F2)♣) + ♣Ũ ∩ L♣) +

∑

C⊆S : CD∈M

max¶♣U ∩ C♣, 1− r

r
♣U ∩D♣♢+ ηn

≥ 1− r

r
(♣F2♣ − ♣φ(F2)♣) +

∑

C⊆S : CD∈M

max¶♣(U ∪ Ũ) ∩ C♣, 1− r

r
♣(U ∪ Ũ) ∩D♣♢+ ηn ,

where the last inequality comes from the fact that ♣F1∩K♣ ≤ ♣F2∩K♣ for all K ∈ F −R,
and that the embedding φ was deĄned in such a way that φ(F1) ⊆ S and φ(F2 \R) ⊆ L.

Proceeding in the same way for every K ∈ F − R, we extend φ(R) to the whole
anchored forest F in such a way that φ(F1) ⊆ S ∩ V (M), φ(F2 \ R) ⊆ L ∩ V (M), and
for each cluster C ∈ V (H) with C ∩ φ(F −R) ̸= ∅ we have ♣C \ (Ũ ∪ U)♣ ≥ rη/8♣C♣.
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We conclude this section by proving Proposition 4.19.

Proof of Proposition 4.19. Given η, d > 0 and r ∈ Q+, let ε := min¶
⎞

ηr
12

⎡2
, drη

100
♢. Then

for any Ñmax ∈ N, set β = rηε
4Ñmax

.

We shall prove only the more diicult Case (1). Case (2) can be proven either
analogously, or can be much simpliĄed as F2 will be mapped outside of B and thus does
not need any reservation or cause any diiculties in embedding F1.

We deĄne a set W = W1 ∪W2 ∪ . . . of reserved vertices by setting W = ∅ at the
beginning and progressively adding vertices to it. Also we shall deĄne the set W̃ as
the set of vertices used by the partial embedding of F − R. Hence at the beginning we
have W̃ = ∅. Suppose that for some s, we have already embedded Kj ∈ F − R, for
j ≤ s. Suppose that W = W1 ∪ · · · ∪Ws is the corresponding set of reserved vertices,
i.e., ♣W ∪ W̃ ♣ = √s

j=1 ♣Kj♣. For the next component Ks+1 ∈ F − R to be embedded, let
Rs+1 be the set of vertices in R adjacent to Ks+1 (at least one, at most two). Let B′ ⊆ B
be such that φ(Rs+1) are typical to each cluster C ∈ B′. By Lemma 2.7 we have that
♣B \ B′♣ ≤ 2

√
ε♣V (H)♣ and thus similarly as in Proposition 4.9 we get for x ∈ Rs+1 that

deg(φ(x),
⋃

B′) ≥ deg(A,B)− 3
√

εn/r

≥
s+1
∑

j=1

♣Kj ∩ F1♣+ ♣
⋃

B ∩ U ♣+ ηn− 3
√

εn/r

≥ ♣
s
⋃

j=1

Wj♣+ ♣W̃ ♣+ ♣Ks+1 ∩ F1♣+ ♣
⋃

B ∩ U ♣+ 3ηn/4

≥ ♣Ks+1 ∩ F1♣+ ♣W ♣+ ♣W̃ ♣+ ♣
⋃

B ∩ U ♣+ 3ηn/4,

Hence there is a cluster B ∈ B′ (not depending on the choice of vertex x in Rs+1)
such that

deg(φ(x), B \ (U ∪W ∪ W̃ )) ≥ 3ηn/(4♣B′♣) ≥ ηn

4Ñmax

+
ηn

2♣V (H)♣ > βn + ηr/2 · ♣B♣.

In particular, in the neighbourhood of each vertex of Rs+1 there are at least ♣Ks+1♣
unused and unreserved ultratypical vertices in B\U . For each x ∈ Rs+1, map its neighbor
in Ks+1 to one of these vertices and add the image to W̃ . Choose a set of vertices of size
♣Ks+1 ∩ F1 \ N(R)♣ in B \ (U ∪W ∪ W̃ ) and add it to Ws+1 (i.e., also to W ). Observe
that ♣B \ (U ∪W ∪ W̃ )♣ ≥ ηr/8 · ♣B♣. We proceed in the same way for every K ∈ F −R.

When we have embedded N(R) ∩ K of the last component K ∈ F − R, we have
obtained an embedding of N(R) and a reservation set W = W1 ∪W2 ∪ . . . for F1 \N(R)
such that Wj lies in the same cluster as φ(N(R)∩Kj) does, and in such a way, that for
any cluster B where we embedded vertices from N(R) (and possibly reserved space), we
still have at least some unused and unreserved vertices, i.e., ♣B\(U∪W∪W̃ )♣ ≥ ηr/8·♣B♣.

Now we shall proceed with the ŠmoreoverŠ part, i.e., the embedding the left-over of
the trees Kj ∈ F − R. Let u, v in cluster B be the images of Kj ∩ N(R) (alternatively
there is only one such image). Set Wj = ∅ (and thus remove from W a set of vertices of
the size ♣Kj ∩ F1 \N(R)♣). Similarly as above, we Ąnd D ∈ V (H) such that

deg(u, D \ (U ∪W ∪ W̃ ∪ Ũ) ≥ ♣Kj ∩ F2♣+ ηr/8 · ♣D♣,
and similarly

deg(v, D \ (U ∪W ∪ W̃ ∪ Ũ) ≥ ♣Kj ∩ F2♣+ ηr/8 · ♣D♣.
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As we have ♣B\(U∪W∪W̃∪Ũ)♣ ≥ ♣Kj∩F1\N(R)♣+rη/8·♣B♣ and rη/8 > 3ε, we may
use Lemma 2.14 with TL2.14 := Kj, RL2.14 := Kj ∩N(R), X ′

L2.14 := B \ (U ∪W ∪W̃ ∪ Ũ),
Y ′

L2.14 := D \ (U ∪W ∪ Ũ ∪ W̃ ), αL2.14 := 32ε
rη

, εL2.14 := ε, and dL2.14 := d to extend φ

to the whole Kj with F1 ∩Kj ⊆ B and F2 ∩Kj ⊆ D and add the used vertices to W̃ .
Observe that after the embedding of Kj, we still have in each cluster B and D at least
rη/8 · ♣B♣ and rη/8 · ♣D♣ vertices, respectively, outside U , W , Ũ , and W̃ . We continue
until every K ∈ F −R is embedded.

4.2.5 Proof of Proposition 4.11

Given δ, q, d > 0 and r̃ ≤ r′ ≤ 1/2 set

ε := min

∏

⨄

⎩

εP 4.18(
qδ

20
, d, r′), εP 4.19(

qδ

20
, d, r′),

⎠

δq

3

⎜2

, d/17

∫

⎬

⋂

,

β := min

∮

βP 4.18(
qδ

20
, r′, ε, Ñmax), βP 4.19(

qδ

20
, r′, ε, Ñmax), δr′/8

⨀

,

n0 :=
200

δqr′β
.

We gradually construct an injective homomorphism φ of T into H. To this end we
consider the four introduced cases.

In each case, we start by embedding the vertices of WA and WB to ultratypical
vertices of A and B, respectively. This can be done by applying Lemma 2.14 with X ′

L2.14

and Y ′
L2.14 being the sets of ultratypical vertices of A and B, respectively, TL2.14 being

any tree with colour classes WA and WB such that T [WA ∪WB] is a subgraph of TL2.14,
αL2.14 = 5ε and RL2.14 = ∅. Note that the assumptions of Lemma 2.14 are satisĄed, since
the pair (A, B) has density at least d− ε > 15ε, by Lemma 2.7 at least 1−√ε > 4/5 of
vertices of A or B, respectively, are ultratypical, and moreover |WA♣ < ε♣A♣, ♣WB♣ < ε♣B♣
by deĄnition of Ąne partition.

We embed the rest of the tree T using diferent strategy for each case. In what
follows, we use indexes 1 and 2 to denote that the structure is a substructure of T1 or T2,
respectively.

When using Propositions 4.18 and 4.19, we shall always use (here we use the index

P to indicate the parameter of the propositions) dP := d, rP := r′, Ñmax,P := Ñmax,
nP := n, HP := H, HP := H, and RP will be either WA or WB depending whether
we embed part of DA, or DB, respectively. In some cases, we shall use Proposition 4.19
several times. To avoid confusion, we shall use upper indices in parenthesis, e.g., U

(1)
P 4.19,

to indicate to which application of the proposition we refer. We will write DB1 as a
shortcut for DB ∩ V (T1) and DB2 := DB ∩ V (T2) and DA1 as a shortcut for DA ∩ V (T2)
(sic) and DA2 := DA ∩ V (T1). Thus, neighbours of WA or WB are in DA1 or DA2,
respectively.

Case A

In this case we assume that there are two adjacent clusters A and B in H such that
deg(A,S1 ∪ SM) ≥ 1−r̃

r̃
♣DA2♣+ δk and deg(B,L) ≥ (r̃ + δ)k.

We start by embedding the vertices of WA and WB to ultratypical vertices of clusters
A and B, respectively. We then further partition the rest of T and embed it in the
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L

SM

F ′

1

F ′

2WA WB
DB1G′

2

G′

1

S1 S0

Figure 4.4: The embedding conĄguration in the case A. After inserting the vertices of
WA, WB in the ultratypical vertices of clusters A and B we use Proposition 4.18 to embed
F ′ in the matching connecting SM := S ∩M and L ∩M . Then we invoke Proposition
4.19 to embed G ′ using the vertices in S1. Finally, we again invoke Proposition 4.19 to
embed DB. Note that in this case, as well as in all of the subsequent cases, it may be
the case that B ∈ S1.

following three steps which we describe in detail later. We partition the trees from DA

in two sets Ű F and G and deĄne F ′ and G ′ as sets of subtrees of F and G, respectively,
with leaves in DA1 removed. We denote F ∩DAi and G ∩DAi by Fi and Gi respectively,
for i = 1, 2. Analogously, we deĄne F ′

i and G ′
i for i = 1, 2.

In the Ąrst step, we embed F ′ into the edges of the matching M using Proposition
4.18 and we embed G ′ through S1 vertices using Proposition 4.19 (i.e., φ(G ′

1) ⊆ S1 and
φ(G ′

2) ⊆ L).
In the second step, we embed the trees from DB1 using again Proposition 4.19. To this

end we again use the bound on the degree of the cluster B Ű speciĄcally, as deg(B,L) ≥
r̃k + δk = ♣DA2 ∪ DB1♣ + δk, the cluster B has enough neighbours for embedding DB1,
even though DA2 is already embedded.

In the third step, we embed F \F ′ and G\G ′ greedily. The structure of the embedded
tree is sketched in Figure 4.4.

1. In this step we embed the trees from the anchored forest DA except of several
leaves, ensuring that the neighbours of those left-out leaves are mapped to ultra-
typical vertices in L-clusters. We split the anchored βk-forest DA into two disjoint
forests F and G in the following way. Let F be a maximal subset of trees of DA

such that

♣F2♣ ≤
r′

1− r′ deg(A,SM)− r′

1− r′ δk/2, (4.16)
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and we choose it as an empty set if the size of the expression is less than zero.

This means that if G is non-empty then

♣F2♣ ≥
r′

1− r′ deg(A,SM)− r′

1− r′ δk/2− βk, (4.17)

otherwise we could move a suitable tree from G to F while retaining the condition
imposed on F . By deleting the leaves of trees in DA that are contained in F1 ∪ G1

we get forests F ′ and G ′. For each tree K ∈ F ′ ∪ G ′ we have ♣K ∩ (F ′
1 ∪ G ′

1)♣ ≤
♣K ∩ (F ′

2 ∪ G ′
2)♣, because each vertex from K ∩ (F ′

1 ∪ G ′
1) has at least one child in

(F ′
2 ∪ G ′

2). SpeciĄcally, ♣G ′
1♣ ≤ ♣G ′

2♣.
Now we apply Proposition 4.18 to our anchored forest FP 4.18 := F ′ if it is non-
empty. Set UP 4.18 := φ(WA ∪WB), ηP 4.18 := qδ/4, MP 4.18 := M, and AP 4.18 := A.
From DeĄnition 2.8 we know that ♣UP 4.18♣ = ♣WA ∪WB♣ ≤ 12k/(βk) = 12/β.

To apply the proposition it suices to verify that the degree of A in SM is suiciently
large, as by deĄnition of F ′ we know that for each K ∈ DA we have ♣K ∩ F ′

1♣ ≤
♣K ∩ F ′

2♣. We have

deg(A,SM) ≥ 1− r′

r′ ♣F2♣+ δk/2

≥ 1− r′

r′ ♣F2♣+
1− r′

r′ ♣UP 4.18♣+ δk/4

≥ 1− r′

r′ ♣F
′
2♣+

∑

C⊆S : CD∈M

max¶♣UP 4.18 ∩ C♣, 1− r′

r′ ♣UP 4.18 ∩D♣♢ + ηP 4.18n ,

where the Ąrst inequality is due to the deĄnition of F (bound 4.16) and the second
one and third one are due to the facts that δk/4 ≥ 1−r′

r′ ♣UP 4.18♣ (from the choice of
n0) and δk/4 ≥ ηP 4.18n (from the choice of ηP 4.18).

If G is non-empty and, thus, the bound 4.17 holds, we proceed by embedding G ′.

We apply Proposition 4.19 (ConĄguration 2) to the anchored forest G ′ and B(1)
P 4.19 :=

S1. As we know that NH(S1) is disjoint from SM , there is no need to include
φ(F1) ⊆ SM in the forbidden set U that ensures the injectiveness of φ. Thus, we

set U
(1)
P 4.19 := φ(F2 ∪WA ∪WB).

Also note that
√B(1)

P 4.19 ∩ U
(1)
P 4.19 ⊆ φ(WA ∪ WB), because φ(F2) ∈ L (we could

actually replace WA ∪WB by WB). Let η
(1)
P 4.19 := δq/4, and A

(1)
P 4.19 := A. Now we

verify the Ąrst condition from Proposition 4.19. For the degree of the cluster A in
S1 we have

deg(A,S1) = deg(A,S1 ∪ SM)− deg(A,SM)

assumption of this configuration ≥ 1− r̃

r̃
♣DA2♣+ δk − deg(A,SM)

r̃ ≤ r′, bound (4.17) ≥ 1− r′

r′ ♣F2 ∪ G2♣+ δk − 1− r′

r′ ♣F2♣ − δk/2− 1− r′

r′ βk

bounding error terms ≥ 1− r′

r′ ♣G2♣+ 3δk/8

♣G2♣ ≥ ♣G′

2
♣ ≥ ♣G′

1
♣ ≥ ♣G ′

2♣+ 3δk/8

≥ ♣G ′
1♣+ ♣

⋃

B(1)
P 4.19 ∩ U

(1)
P 4.19♣+ η

(1)
P 4.19n ,
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where we at Ąrst used the lower bound on the degree of A in S1 ∪ SM , then the
lower bound on the size of F2, after bounding the error terms we used the fact that
♣G ′

2♣ ≥ ♣G ′
1♣ and then we again bounded the errors terms by using the facts that

♣√B(1)
P 4.19 ∩ U

(1)
P 4.19♣ ≤ ♣WA ∪WB♣ ≤ δk/8 and η

(1)
P 4.19n ≤ δk/4.

Further we verify that for each cluster C ∈ S1 we have

deg(C, V (H) \ B(1)
P 4.19) = deg(C,L) ≥ r̃k + δk

bound on the skew of T ≥ ♣DA2♣+ ♣φ(WA ∪WB)♣+ η
(1)
P 4.19n

= ♣F2♣+ ♣G2♣+ ♣φ(WA ∪WB)♣+ η
(1)
P 4.19n

≥ ♣G ′
2♣+ ♣U (1)

P 4.19♣+ η
(1)
P 4.19n ,

Thus we can extend φ to G. Note that φ(G2) ⊆ L.

2. In this step we embed the trees from DB using ConĄguration 1 from Proposition
4.19. The appropriate set U

(2)
P 4.19 guaranteeing the injectiveness of φ consists of

φ(F ′
1∪F ′

2∪G ′
1∪G ′

2∪WA∪WB). We set B(2)
P 4.19 := L, η

(2)
P 4.19 := δq/2 and A

(2)
P 4.19 := B.

First we verify the Ąrst condition of the proposition. We have

deg(B,L) ≥ r̃k + δk

bound on the skew of T = ♣F2 ∪ G2 ∪ DB1♣+ δk

bounding error terms ≥ ♣φ(F2 ∪ G2 ∪WA ∪WB)♣+ ♣DB1♣+ δk/2

≥ ♣
⋃

B(2)
P 4.19 ∩ U

(2)
P 4.19♣+ ♣DB1♣+ η

(2)
P 4.19n ,

We immediately use the ŠmoreoverŠ part of the proposition with Ũ
(2)
P 4.19 = ∅ and

verify that for each L-cluster C we have

deg(C) ≥ k + δk

≥ ♣DB1♣+ ♣DB2♣+ ♣DA♣+ ♣WA ∪WB♣+ δk

≥ ♣DB1♣+ ♣DB2♣+ ♣U (2)
P 4.19♣+ η

(2)
P 4.19n ,

where we use mainly the fact that ♣DA ∪ DB ∪WA ∪WB♣ = k.

3. We have deĄned an injective homomorphism φ of the whole tree T except of its
leaves from F1 \ F ′

1 and G1 \ G ′
1. We know that their neighbours are embedded in

ultratypical vertices of L-clusters. By Proposition 4.9, such vertices have degree at
least k + δk− 2

√
εn/r′ ≥ k as δq > 2

√
ε/r′. Thus we can greedily extend φ to the

whole tree T .

Case B

In this case we assume that r̃♣DA1♣ ≥ (1−r̃)♣DA2♣ and that there are two adjacent clusters
A, B such that deg(A,S1∪SM ∪L) ≥ (1+δ)k and deg(B,L) ≥ (r̃+δ)k. The embedding
procedure is roughly similar to the one from Case A. However, for embedding DA we
now also use L.

We start by embedding certain part of the anchored forest DA using the matching M
and the set S1 similarly to the Case A. Then, we proceed by reserving ♣DB1♣ vertices
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Figure 4.5: The embedding conĄguration in the case B. After inserting the vertices of
WA, WB in the ultratypical vertices of clusters A and B we use Proposition 4.18 to embed
F ′ in the matching M. Then we invoke Proposition 4.19 to embed G ′ using the vertices
in S1. Then we reserve suitable vertices in the neighbourhood of the cluster B in L that
will later serve for embedding of DB1 using Proposition 4.19. Then we embed H1 using
the same proposition and Ąnally we embed DB through the reserved vertices.

that will later help us to embed the anchored trees from DB. In the third part we
embed the rest of the forest DA using the high degree vertices in L, and then proceed by
embedding DB using the reserved vertices. Finally, we argue that we can embed several
leftover leaves of the tree as in the previous case.

1. Analogously to the preceding case we split the anchored forestDA into three disjoint
sets F = F1 ∪ F2, G = G1 ∪ G2, and H = H1 ∪H2 in the following way.

Let K1, K2, . . . be the trees of DA sorted according to their skew, i.e., according to
the ratio ♣Ki ∩ V (T2)♣/♣Ki ∩ V (T1)♣ in descending order. We deĄne F as the union
K1 ∪ · · · ∪Kj, where j is taken to be maximal such that

♣F2♣ =
j
∑

i=1

♣Ki ∩ V (T1)♣ ≤
r′

1− r′ deg(A,SM)− r′

1− r′ δk/3. (4.18)

If the right hand side is less than zero, deĄne F as the empty set. Then we similarly
deĄne G as the union of trees Kj+1, . . . , Kj′ where j′ is maximal such that

♣G2♣ =
j′
∑

i=j+1

♣Ki ∩ V (T1)♣ ≤
r′

1− r′ deg(A,S1)−
r′

1− r′ δk/3. (4.19)

Finally we set H = DA \ (F ∪ G).
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As before, we have

♣F2♣ ≥
r′

1− r′ deg(A,SM)− r′

1− r′ δk/3− βk , (4.20)

if F ≠ DA and

♣G2♣ ≥
r′

1− r′ deg(A,S1)−
r′

1− r′ δk/3− βk , (4.21)

if F ∪ G ≠ DA. Additionally, we also have

r̃♣F1 ∪ G1♣ ≥ (1− r̃)♣F2 ∪ G2♣ , (4.22)

because of the assumption r̃♣DA1♣ ≥ (1− r̃)♣DA2♣ and the fact that in F ∪ G there
are the anchored trees with biggest skew.

We deĄne F ′ and G ′ as in the previous case. We have ♣K ∩F ′
1♣ ≤ ♣K ∩F ′

2♣ for each
K ∈ F ′ and ♣G ′

1♣ ≤ ♣G ′
2♣.

If F ′ is non-empty we apply Proposition 4.18 to embed the anchored forest FP 4.18 :=
F ′ in the same way as in the previous case. Set UP 4.18 = φ(WA∪WB), ηP 4.18 = δq/4,
rP 4.18 := r′, MP 4.18 := M, and AP 4.18 := A. Similarly to the previous case we verify
that

deg(A,SM) ≥ 1− r′

r′ ♣F2♣+ δk/3

≥ 1− r′

r′ ♣F2♣+
1− r′

r′ ♣UP 4.18♣+ δk/4

≥ 1− r′

r′ ♣F
′
2♣+

∑

C⊆S : CD∈M

max¶♣UP 4.18 ∩ C♣, 1− r′

r′ ♣UP 4.18 ∩D♣♢ + ηP 4.18n .

If G is non-empty we proceed by embedding G ′. This is also done in an analogous
way to the preceding case.

We apply Proposition 4.19 (ConĄguration 2) to the anchored forest F
(1)
P 4.19 := G ′

and set B(1)
P 4.19 := S1. By the properties of a skew LKS graph, the set NH(S1) ∪ S1

is disjoint from SM ⊇ φ(F ′
1), thus for ensuring injectiveness of φ it suices to set

U
(1)
P 4.19 := φ(F ′

2 ∪WA ∪WB) and then we also have
√B(1)

P 4.19 ∩ U
(1)
P 4.19 ⊆ WA ∪WB.

Set η
(1)
P 4.19 := δq/4, and A

(1)
P 4.19 := A.

Now we verify the Ąrst condition from the proposition. For the degree of the
cluster A in S1 we have

deg(A,S1) ≥
1− r′

r′ ♣G2♣+ δk/3

≥ ♣G ′
1♣+ ♣

⋃

B(1)
P 4.19 ∩ U

(1)
P 4.19♣+ η

(1)
P 4.19n ,

where we use the deĄnition of G, the fact that ♣G2♣ ≥ ♣G ′
1♣ and the fact that

♣√B(1)
P 4.19 ∩ U

(1)
P 4.19♣ ≤ δq/12.

Further, we verify that for each cluster C ∈ S1 we have

deg(C, V (H) \ B(1)
P 4.19) = deg(C,L) ≥ r̃k + δk

≥ ♣DA2♣+ ♣φ(WA ∪WB)♣+ δk/2

≥ ♣F2♣+ ♣G2♣+ ♣φ(WA ∪WB)♣+ δk/2

≥ ♣G ′
2♣+ ♣U (1)

P 4.19♣+ η
(1)
P 4.19n ,
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where we used the facts that ♣DA2♣ ≤ r̃k and bounded the error terms in the usual
manner.

2. In this step we reserve suitable vertices for embedding DB and use Proposition
4.19, ConĄguration 1, to this end.

We apply the proposition the anchored forest F
(2)
P 4.19 := DB, A

(2)
P 4.19 := B, the set

U
(2)
P 4.19 := φ(WA ∪WB ∪ F2 ∪ G2), and B(2)

P 4.19 := L. Take η
(2)
P 4.19 := qδ/20. We start

by verifying the Ąrst condition:

deg(B,L) ≥ r̃k + δk

≥ ♣F2 ∪ G2 ∪H2 ∪ DB1♣+ δk

≥ ♣F2 ∪ G2 ∪ DB1♣+ δk

≥ ♣DB1♣+ ♣φ(WA ∪WB ∪ F2 ∪ G2)♣+ δk/2

≥ ♣DB1♣+ ♣U (2)
P 4.19♣+ η

(2)
P 4.19n ,

where we use the upper bound on the smaller colour class of T and then we bound
the error terms as usual. This gives us an embedding of N(WB) ∩ DB as well as
the reservation set W that will help us later for embedding DB1.

Before Ąnishing the embedding of DB by invoking the ŠmoreoverŠ part of Proposi-
tion 4.19, ConĄguration 1, we shall embed the anchored forest H, which will deĄne
the set Ũ

(2)
P 4.19 := φ(H).

3. We proceed with embedding of F
(3)
P 4.19 := H, using a third time Proposition 4.19,

ConĄguration 1. Let U ′ = φ(N(WB) ∩ DB) ∪W , ♣U ′♣ = ♣DB1♣ and set U
(3)
P 4.19 :=

φ(WA∪WB∪F∪G)∪U ′. Thus U
(3)
P 4.19∩L ⊆ φ(WA∪WB∪F ′

2∪G ′
2)∪U ′. Further set

B(3)
P 4.19 := L, η

(3)
P 4.19 := δq/4 ≥ η

(2)
P 4.19, and A

(3)
P 4.19 := A. We verify the Ąrst condition

of the proposition:

deg(A,L)

≥ k + δk − deg(A,SM)− deg(A,S1)

bounds (4.20) and (4.21) ≥ k + δk − (
1− r′

r′ ♣F2♣+ δk/3 +
1− r′

r′ βk)−

(
1− r′

r′ ♣G2♣+ δk/3 +
1− r′

r′ βk)

bounding error terms ≥ k − 1− r′

r′ (♣F2♣+ ♣G2♣) + δk/4

r̃ ≤ r′ ≥ k − 1− r̃

r̃
(♣F2♣+ ♣G2♣) + δk/4

bound (4.22) ≥ k − (♣F1♣+ ♣G1♣) + δk/4

T is of size k ≥ ♣F2♣+ ♣G2♣+ ♣H♣+ ♣DB♣+ ♣WA ∪WB♣+ δk/4

≥ ♣H1♣+ ♣φ(WA ∪WB ∪ F ′
2 ∪ G ′

2)♣+ ♣DB1♣+ δk/4

≥ ♣H1♣+ ♣U (3)
P 4.19 ∩

⋃

B(3)
P 4.19♣+ η

(3)
P 4.19n ,

where we at Ąrst used our bounds on ♣F2♣ and ♣G2♣. Then we used the inequality
r̃♣F1 ∪ G1♣ ≥ (1 − r̃)♣F2 ∪ G2♣, we followed by interpreting k as the size of T and
used trivial bounds on error term throughout the computation.
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We immediately use the second part of the proposition with Ũ
(3)
P 4.19 = ∅. We verify

that for each C ∈ L we have

deg(C) ≥ k + δk

= ♣F ∪ G ∪ H ∪ DB ∪WA ∪WB♣+ δk

≥ ♣H1♣+ ♣H2♣+ ♣U (3)
P 4.19 ∪ Ũ

(3)
P 4.19♣+ η

(3)
P 4.19n .

Thus, we can extend φ to H. Note that ♣C \ (U ∪U ′ ∪ Ũ)♣ ≥ r′η
(3)
P 4.19♣C♣/8 for each

cluster C with C ∩ φ(H).

4. Now, we Ąnish up the embedding of DB, using the ŠmoreoverŠ part of the second
application of Proposition 4.19. The Ąrst condition of the proposition is satisĄed,
as for each C ∈ L we have

deg(C) ≥ k + δk

= ♣DA ∪ DB ∪WA ∪WB♣+ δk

≥ ♣DB1♣+ ♣DB2♣+ ♣φ(WA ∪WB ∪ F ′ ∪ G ′ ∪H)♣+ η
(2)
P 4.19n

≥ ♣DB1♣+ ♣DB2♣+ ♣U (2)
P 4.19 ∪ Ũ

(2)
P 4.19♣+ η

(2)
P 4.19n .

The second condition is that for each cluster C with C ∩ φ(H) we have ♣C \ (U ∪
U ′ ∪ Ũ)♣ ≥ r′η

(2)
P 4.19♣C♣/8. This is satisĄed as η

(3)
P 4.19 ≥ η

(2)
P 4.19 and by the property of

the embedding of H, guaranteed by the third application of Proposition 4.19.

5. We have deĄned an injective homomorphism φ on the whole tree T except of its
leaves from F1 \ F ′

1 and G1 \ G ′
1. As we know that their neighbours are embedded

in ultratypical vertices of L-clusters, we can greedily extend the embedding to the
whole tree T , as in Case A.

Case C

In this case we assume that r̃♣DA1♣ ≤ (1− r̃)♣DA2♣ and that there are adjacent clusters A
and B such that deg(A,S1 ∪ SM ∪L) ≥ (1 + δ)k and deg(B,L) ≥ ♣DB2♣+ δk = ♣DB1♣+
δk. The embedding procedure is very similar to the one from the preceding case, the
diference being in the order in which we embed the parts of T in the host graph.

We start by reserving vertices for the embedding of the anchored forest DB using
Proposition 4.19. Then we embed parts of DA using the matching M and S1 as in the
previous cases. We have to be more careful, though, as the vertices reserved for DB can
cover substantial part of M. We Ąnish by embedding the rest of DA through high degree
L-clusters using Proposition 4.19.

1. We start by reserving vertices for embedding the anchored forest DB such that
DB1 := DB ∩ V (T1) will be embedded in the neighbourhood of the cluster B. Set

B(1)
P 4.19 := L and U

(1)
P 4.19 := φ(WA ∪ WB). Set η

(1)
P 4.19 := qδ/20, and A

(1)
P 4.19 := B.

We apply Proposition 4.19, ConĄguration 1, to reserve vertices in L that will later
serve for embedding of DB. We verify that the Ąrst condition of the proposition is
satisĄed. Indeed:

deg(B,L) ≥ ♣DB1♣+ δk

≥ ♣DB1♣+ ♣φ(WA ∪WB)♣+ η
(1)
P 4.19n ,

57



L

SM

F ′

2WA
G′

2
H1

G′

1

S1 S0

F ′

1

DB1 WB

Figure 4.6: The embedding conĄguration in the case C. The conĄguration is very similar
to the preceding one from case B. However, in this case we start by embedding DB in
the neighbourhood of the cluster B. The Ągure suggests that because of the vertices
reserved for DB1 we must be more careful in the application of Proposition 4.18 and add
those vertices in the forbidden set UP 4.18.

where we used the standard error estimation.

This gives us embedding of N(WB) ∩ DB as well as a reserved set W . We set
U ′ = φ(N(WB) ∩ DB) ∪W , ♣U ′♣ = ♣DB1♣. After embedding the whole T except
of several of its leaf neighbours, we will invoke the second part of the proposition
with Ũ (1) = φ(F ′ ∪ G ′ ∪ H) where F ′ ∪ G ′ ∪ H ⊆ DA. Note that if we set Ũ (1)

to such value, we will satisfy the Ąrst condition needed for the actual embedding
of DB, because for any cluster C ∈ L we have

deg(C) ≥ k + δk

= ♣DA ∪ DB ∪WA ∪WB♣+ δk

≥ ♣DB1♣+ ♣DB2♣+ ♣U (1)
P 4.19 ∪ Ũ (1)♣+ η

(1)
P 4.19n .

To satisfy the second condition we will ensure that for all subsequent applications
of Propositions 4.18 and 4.19 we choose the value η being greater than η

(1)
P 4.19.

2. We now proceed by embedding the anchored forest DA analogously to the previous
case. We split the forest DA into three (possibly empty) forests F ,G,H in such a
way that F is maximal with

♣F2♣ ≤
r′

1− r′ deg(A,SM)− ♣U ′♣ − r′

1− r′ δk/3 , (4.23)

or F is empty if the value of right hand side is smaller then zero. Moreover, if
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F ≠ DA, we have

♣F2♣ ≥
r′

1− r′ deg(A,SM)− ♣U ′♣ − r′

1− r′ δk/3− βk . (4.24)

Then we similarly deĄne G to be maximal such that

♣G2♣ ≤
r′

1− r′ deg(A,S1)−
r′

1− r′ δk/3 , (4.25)

or G is empty if the value of right hand side is smaller then zero. Moreover, if
F ∪ G ≠ DA, we have

♣G2♣ ≥
r′

1− r′ deg(A,S1)−
r′

1− r′ δk/3− βk . (4.26)

We have H := DA \ (F ∪G) and, as in the previous case, F ∪G consist of the trees
with big skew, so if DA2 is non-empty we have:

1− r̃

r̃
≥ ♣DA1♣
♣DA2♣

≥ ♣H1♣
♣H2♣

. (4.27)

We deĄne F ′ and G ′ as usual. We use Proposition 4.18 to embed the forest FP 4.18 :=
F ′ as in the previous cases. Set UP 4.18 := φ(WA ∪ WB) ∪ U ′, ηP 4.18 := δq/4,
MP 4.18 := M, and AP 4.18 := A. We verify that

deg(A,SM) ≥ 1− r′

r′ ♣F2♣+
1− r′

r′ ♣U
′♣+ δk/3

≥ 1− r′

r′ ♣F2♣+
1− r′

r′ ♣UP 4.18♣+ δk/4

≥ 1− r′

r′ ♣F
′
2♣+

∑

C⊆S : CD∈M

max¶♣UP 4.18 ∩ C♣, 1− r′

r′ ♣UP 4.18 ∩D♣♢ + ηP 4.18n ,

where we used the fact that ♣UP 4.18♣ = ♣φ(WA ∪WB)♣+ ♣U ′♣ ≤ ♣U ′♣+ δk/12.

If G is non-empty, we proceed by embedding G ′. As in the preceding cases, we apply
Proposition 4.19, ConĄguration 2, to F

(2)
P 4.19 := G ′ and set B(2)

P 4.19 := S1. As we know
that NH(S1) ∪ S1 is disjoint from

√SM ⊇ φ(F ′
1), for ensuring the injectiveness of

φ it suices to set U
(2)
P 4.19 := φ(F ′

2 ∪WA ∪WB) ∪ U ′. Because φ(F ′
2) ∪ U ′ ⊆ L, we

have
√B(2)

P 4.19 ∩ U
(2)
P 4.19 ⊆ φ(WA ∪WB). Set η

(2)
P 4.19 := δq/4, and A

(2)
P 4.19 := A. We

start by verifying the Ąrst condition from the proposition. We have

deg(A,S1) ≥
1− r′

r′ ♣G2♣+ δk/3

≥ ♣G ′
1♣+ ♣

⋃

B(2)
P 4.19 ∩ U

(2)
P 4.19♣+ η

(2)
P 4.19n ,

where we use the deĄnition of G, the fact that ♣G2♣ ≥ ♣G ′
1♣ and the fact that

♣√B(2)
P 4.19 ∩ U

(2)
P 4.19♣ ≤ 12/β.

Further we verify that for each cluster C ∈ S1 we have

deg(C, V (H) \
⋃

B(2)
P 4.19) = deg(C,L) ≥ r̃k + δk

bound on skew of T ≥ ♣DA2♣+ ♣DB2♣+ δk

≥ (♣F2♣+ ♣G2♣) + ♣DB1♣+ ♣φ(WA ∪WB)♣+ δk/2

≥ ♣G ′
2♣+ ♣φ(F ′

2 ∪WA ∪WB)♣+ ♣U ′♣+ δk/2

≥ ♣G ′
2♣+ ♣U (2)

P 4.19♣+ ηn ,
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where we started by using the bound on the skew of T , i.e., ♣DA2♣ + ♣DB2♣ ≤ r̃k,
then bounded the error terms and rearranged suitable terms.

3. Now we apply Proposition 4.19, the Ąrst part, to embed the forest F
(3)
P 4.19 := H.

Set B(3)
P 4.19 := L and U

(3)
P 4.19 := φ(WA ∪ WB ∪ F ′ ∪ G ′) ∪ U ′, thus U

(3)
P 4.19 ∩ L ⊆

φ(WA ∪WB ∪ F ′
2 ∪ G ′

2) ∪ U ′. Set η
(3)
P 4.19 := δq/8, and A

(3)
P 4.19 := A. We start by

verifying the Ąrst condition:

deg(A,L) ≥ k + δk − deg(A,SM)− deg(A,S1)

bounds (4.24) and (4.26) ≥ k + δk − (
1− r′

r′ ♣F2♣+ δk/3 +
1− r′

r′ ♣DB1♣+
1− r′

r′ βk)

− (
1− r′

r′ ♣G2♣+ δk/3 +
1− r′

r′ βk)

bounding error terms ≥ k − 1− r′

r′ (♣F2 ∪ G2 ∪ DB1♣) + δk/4

r̃ ≤ r′ ≥ k − 1− r̃

r̃
(♣F2 ∪ G2 ∪ DB1♣) + δk/4

= k − 1

r̃
(♣F2 ∪ G2 ∪ DB1♣) + (♣F2 ∪ G2 ∪ DB1♣) + δk/4

bound on skew of T ≥ k − 1

r̃
(r̃k − ♣H2♣) + (♣F2 ∪ G2 ∪ DB1♣) + δk/4

=
1

r̃
♣H2♣+ (♣F2 ∪ G2 ∪ DB1♣) + δk/4

≥ 1− r̃

r̃
♣H2♣+ (♣F2 ∪ G2 ∪ DB1♣) + δk/4

bound (4.27) ≥ ♣H1♣+ ♣φ(WA ∪WB ∪ F ′
2 ∪ G ′

2)♣+ ♣DB1♣+ η
(3)
P 4.19n

≥ ♣H1♣+ ♣U (3)
P 4.19 ∩

⋃

B(3)
P 4.19♣+ η

(3)
P 4.19n ,

We set Ũ
(3)
P 4.19 = ∅ and immediately invoke the second part of proposition. We

verify that for each C ∈ L we have

deg(C) ≥ k + δk

= ♣DA ∪ DB ∪WA ∪WB♣+ δk

≥ ♣H1♣+ ♣H2♣+ ♣φ(WA ∪WB ∪ F ′ ∪ G ′) ∪ U ′♣+ η
(3)
P 4.19n

≥ ♣H1♣+ ♣H2♣+ ♣U (3)
P 4.19 ∪ Ũ

(3)
P 4.19♣+ η

(3)
P 4.19n .

Thus we can extend φ to H. Moreover, note that after each application of Propo-
sitions 4.18 and 4.19 it was true that φ avoided at least r′η

(1)
P 4.19♣C♣/8 vertices of

each cluster C. Thus, we can extend φ to DB as we promised in the Ąrst part of
the analysis of this case.

4. We have deĄned φ on the whole tree T except for F1 \ F ′
1 and G1 \ G ′

1. We can
again extend φ to the whole T in the usual greedy manner.

Case D

In this case we assume the existence of two adjacent clusters A, B such that deg(A,SM ∪
L) ≥ k+δk and deg(B,L) ≥ ♣DB2♣+δk. Moreover, we assume that r̃♣DA1♣ ≥ (1−r̃)♣DA2♣
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and ♣DB2♣ ≤ r̃
1−r̃

rk and for each edge (C, D) ⊆M either deg(A, C) = 0 or deg(A, D) = 0.

We proceed in the same way as in the previous case, although the analysis is diferent.

L

SMS1 S0

F ′

1

F ′

2 WB
G1 DB1WA

DB1

Figure 4.7: The embedding conĄguration in the case D. The order of operations is the
same as in the preceding case, but the analysis is diferent. The Ągure suggests that as
in the previous case we have to me more careful in the application of Proposition 4.18.
The special condition on the neighbourhood of the cluster A plays the following role: we
split the reserved vertices for DB1 into two parts Ű the vertices in the neighbourhood of
A (the right rectangle on the Ągure) and those that are not neighbours of A (the left
rectangle). Now the condition implies that the Ąrst type of vertices does not play a role
in the embedding of F ′ using the matching, whilst the second type of vertices does not
have to be considered in the embedding of G through the L-neighbourhood of A.

1. We start by reserving vertices for embedding the anchored forest F
(1)
P 4.19 := DB =

DB1∪DB2 such thatDB1 will be embedded in the L-neighbourhood of the cluster B.
This is done using Proposition 4.19 in the exactly same way as in the previous case.
We get an embedding of N(WB) ∩ DB and a set of reserved vertices W . We set
U ′ = φ(N(WB) ∩ DB) ∪ W , ♣U ′♣ = ♣DB1♣. We will also invoke the ŠmoreoverŠ

part Proposition 4.19 after embedding the rest of T and then we set Ũ
(1)
P 4.19 =

φ(F ′ ∪ G) for F ′ ∪ G ⊆ DA. We have to ensure that for subsequent applications of

Propositions 4.18 and 4.19 we have η ≥ η
(1)
P 4.19 = qδ/20.

Moreover, we split the set U ′ ⊆ L in two sets U ′
1 and U ′

2 such that U ′
1 contains the

vertices from U ′ contained in clusters C such that C ∈ NH(A) (we deĄne NH(A)
as the set of clusters C with deg(A, C) > 0) and U ′

2 := U ′ \ U ′
1. Note that our

assumption on the neighbourhood of cluster A states that if we have (C, D) ⊆M
with D ∩ U ′

1 ̸= ∅, we have then deg(A, C) = 0.
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2. We continue by embedding the anchored forest DA analogously to previous cases.
Partition DA = F ∪ G, ordering the components by decreasing order f their skew,
in such a way that F is maximal with

♣F2♣ ≤
r′

1− r′ deg(A,SM)− ♣U ′
2♣ −

r′

1− r′ δk/2 , (4.28)

or F is empty if the right hand side is smaller than zero. We deĄne F ′ as usual. If
F ≠ DA, we have

♣F2♣ ≥
r′

1− r′ deg(A,SM)− ♣U ′
2♣ −

r′

1− r′ δk/2− βk . (4.29)

Moreover, F is chosen so that it contains the trees with maximal skew, thus if it
is non-empty we have

♣F1♣
♣F2♣

≥ ♣F1 ∪ G1♣
♣F2 ∪ G2♣

≥ 1− r̃

r̃
. (4.30)

Now we use Proposition 4.18 to embed FP 4.18 := F ′. Set UP 4.18 := φ(WA∪WB)∪U ′
2

and MP 4.18 be only those matching pairs (C, D), C ⊆ S such that deg(A, C) > 0.
Observe that U ′

1 is disjoint from
√

V (MP 4.18). Set ηP 4.18 := δq/3, and AP 4.18 := A.
As in the previous cases we easily verify that

deg(A,SM) ≥ 1− r′

r′ ♣F2♣+
1− r′

r′ ♣U
′
2♣+ δk/2

≥ 1− r′

r′ ♣F2♣+
1− r′

r′ ♣UP 4.18♣+ δk/3

≥ 1− r′

r′ ♣F
′
2♣+

∑

C⊆S : CD∈M

max¶♣UP 4.18 ∩ C♣, 1− r′

r′ ♣UP 4.18 ∩D♣♢ + ηn.

Thus we can extend φ to F ′. Note that F ′
2 is embedded in L-clusters that are not

in the neighbourhood of A. Indeed, from our assumption on the cluster A we have
deg(A, D) = 0 for any edge CD ∈MP 4.18, with C ⊆ S.

3. We now apply Proposition 4.19, Ąrst part, to embed F
(2)
P 4.19 := G if it is non-

empty. Set B(2)
P 4.19 := L ∩NH(A) and U

(2)
P 4.19 := φ(WA ∪WB ∪ F) ∪ U ′. Note that

U
(2)
P 4.19 ∩

√B(2)
P 4.19 ⊆ φ(WA ∪WB) ∪ U ′

1, as we know that neither U ′
2, nor φ(F ′

2) is

in NH(A) and φ(F ′
1) ∩ L = ∅. Set η

(2)
P 4.19 := qδ/4, and A

(2)
P 4.19 := A.

We verify the Ąrst condition of the proposition:
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deg(A,L) ≥ k + δk − deg(A,SM)

bound (4.29) ≥ k + δk − (
1− r′

r′ ♣F2♣+
1− r′

r′ ♣U
′
2♣+ δk/2 +

1− r′

r′ βk)

definition of U′ ≥ k + δk − 1− r′

r′ ♣F2♣ −
1− r′

r′ (♣DB1♣ − ♣U ′
1♣)− δk/2− 1− r′

r′ βk

r̃ ≤ r′ ≥ k − 1− r̃

r̃
♣F2♣ −

1− r̃

r̃
♣DB1♣+

1− r′

r′ ♣U
′
1♣+ δk/3

bound (4.30) ≥ k − ♣F1♣ −
1− r̃

r̃
♣DB1♣+ ♣U ′

1♣+ δk/3

assumed bound on DB1 ≥ k − ♣F1♣ −
1− r̃

r̃

r̃

1− r̃
r̃k + ♣U ′

1♣+ δk/3

= (1− r̃)k − ♣F1♣+ ♣U ′
1♣+ δk/3

bound on the skew of T ≥ ♣DA1♣ − ♣F1♣+ ♣U ′
1♣+ δk/3

≥ ♣G1♣+ ♣U ′
1♣+ δk/3

≥ ♣G1♣+ ♣U (2)
P 4.19 ∩

⋃

B(2)
P 4.19♣+ η

(2)
P 4.19n .

We set Ũ
(2)
P 4.19 := ∅ and immediately apply the second part of the proposition. We

verify that for each C ∈ L we have

deg(C) ≥ k + δk

= ♣DA ∪ DB ∪WA ∪WB♣+ δk

≥ ♣G1♣+ ♣G2♣+ ♣φ(WA ∪WB ∪ F ′)♣+ ♣DB1♣+ η
(2)
P 4.19n

≥ ♣G1♣+ ♣G2♣+ ♣U (2)
P 4.19 ∪ Ũ

(2)
P 4.19♣+ η

(2)
P 4.19n .

Thus, we can extend φ to G. Moreover, after each operation it was true that φ
avoided at least r′η

(1)
P 4.19♣C♣/8 vertices of each cluster C. Thus, we can extend φ

to DB using the ŠmoreoverŠ part of Proposition 4.19.

4. We again extend the embedding of T greedily to F1 \ F ′
1 as usual.
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Chapter 5

The skew Loebl-Komlós-Sós
conjecture for paths

In this chapter we verify that the skew Loebl-Komlós-Sós conjecture holds for paths.
Since paths have very simple structure, we will be able to verify the conjecture for them
in full generality.

The path on k vertices is arguably the most important tree from Tk, thus it make sense
to verify that our embedding conjectures hold for them. That the Erdős-Sós conjecture
holds for paths for observed already in 1959 by Erdős and Gallai. In Section 5.2 we
interpret their proof as a simple algorithm for Ąnding the path. This will serve as a
motivation for a later algorithm for Ąnding paths in LKS graphs.

Theorem 5.1. Every (r, k)-LKS graph G contains a path on ⌊2rk⌋+ 1 vertices.

The proof that we present in the next section is basically the one from [BLW00].
Although it appears there only for the special case r = 1/2, the generalisation for all
r ≤ 1/2 is straightforward and does not afect the combinatorial part of the proof. We
still give the proof here, since it is not clear that all of the computations really work out
as desired for r < 1/2.

Note that after seeing the proof of Theorem 5.1, one can observe that there is an
appropriate polynomial time algorithm for constructing long paths in (r, k)-LKS graphs.
In the last section we actually provide an algorithm with linear time complexity for Ąxed
r < 1/2 (we however state the theorem with the dependence of time complexity on r).

Theorem 5.2. There is an algorithm for an (r, k)-LKS graph G finds a path on ⌊2rk⌋+1
vertices in time O(min(m/(1− 2r), mk)).

The author implemented the algorithm as his software project.

5.1 Proof of Theorem 5.1

For Ąxed r suppose that k is the smallest integer for which the theorem fails, i.e., there
is an (r, k)-LKS graph G such that P⌊2rk⌋+1 ̸∈ G. Since k is minimal, G contains a path
on ⌊2r(k − 1)⌋ + 1 ≥ ⌊2rk − 1⌋ + 1 = ⌊2rk⌋ vertices. Now we deĄne r′ < r to be such
that 2r′k = ⌊2rk⌋. Hence we have an (r′, k)-LKS graph that does not contain a path on
2r′k + 1 vertices, but does contain a path on 2r′k vertices. We may, moreover, assume
that G is an inclusion-wise minimal counterexample to r′ and k, hence it is connected
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and does not contain edges between its S-vertices. It can be checked that the theorem
holds for any r, k if rk ≤ 1, hence we suppose that k > 1

r′ ≥ 2.
We now derive a contradiction by Ąnding a path on 2r′k + 1 vertices in G. For

convenience and since we do not use the value of r anymore, we use the letter r to
denote the value of r′.

Before proving the theorem we gradually show that the following conĄgurations can-
not occur in G:

Proposition 5.3. The following cannot occur in G:

1. G contains a path on 2rk vertices with one of its endpoints in L.

2. G contains a path on 2rk − 1 vertices with both of its endpoints in L.

3. G contains a cycle C on at least 2rk vertices.

4. G contains a cycle C on 2rk − 1 vertices.

5. G contains a cycle C on 2rk − 2 vertices.

Proof. 1Ű2 We use the greedy argument to prolong the path and get a path on 2rk + 1
vertices.

3 G is connected and has at least k + 1 ≥ 2rk + 1 vertices. Thus there are u ∈ C
and v ∈ G \C connected by an edge. Then vu

−→
C u− is a path with at least 2rk + 1

vertices.

4 We will consider two cases.

(a) There is an L-vertex u outside of C.

Thus we have a path
−→
P from u to some v ∈ C. Now the path u

−→
P v
−→
C v− has

at least 2rk vertices and one of its endpoint is in L. This contradicts the Ąrst
statement of this proposition.

(b) All L-vertices are in C.

If there are two consecutive vertices in C that are both in L, the rest of
the cycle forms a path with both of its endpoints in L, which contradicts
the second statement of this proposition. Otherwise the size of C is at least
2♣L♣ ≥ 2rn ≥ 2r(k + 1) ≥ 2rk, which contradicts the third statement from
this lemma.

5 Let
−→
C be an oriented cycle of length 2rk − 2 in L such that the number of L

vertices on C is the largest possible. We will again consider two cases.

(a) There is an L-vertex u outside of C.

Thus, there is a path
−→
P from u to some v ∈ C. The path has to consist of a

single edge, otherwise we would have a path on at least 2rk vertices with one
endpoint in L. We can also assume that both v− and v+ are in S, otherwise

the path uv
−→
C v− or uv

←−
C v+ would have 2rk − 1 vertices and both endpoints

in L. This means that v has to be in L.

If v, w ∈ C and there are edges uv and uw, it cannot happen that w = v+ or

w = v++, because then the cycle uw
−→
C vu would have either more vertices or
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more L-vertices than C. It also cannot be the case that w = v+++, as this
would mean that v+ and v++ = w− are two neighbouring S-vertices.

So there are at most (2rk − 2)/4 edges from u to C. The rest of the neigh-
bours of u has to be leaves, because otherwise we would again have a path
contradicting the Ąrst part of this lemma. Number of those neighbours is at
least

k − 2rk − 2

4
=
⎤

1− r

2

⎣

k +
1

2
>
⎤

1− r

2

⎣

1

r
+

1

2
=

1

r
.

But this contradicts Lemma 2.3 for X deĄned as the leaf neighbours of u.

(b) All L-vertices are on C.

Thus 2rk−2 = ♣C♣ ≥ ♣L♣ ≥ rn, implying that k ≥ n
2

+ 1
r

> n
2
. Let SC = S∩C

and SR = S \C. Additionally, we denote A ⊆ C∩L the set of L vertices lying
on C such that their successors on C are also in L. We have ♣A♣ = ♣L♣ − ♣SC ♣.
We may suppose that two diferent vertices u, v from A have diferent neigh-
bourhoods in SR (i.e. N(u)∩N(v)∩SR = ∅) because if there were two edges

uw and vw (for some w ∈ SR) the path u+−→C vwu
←−
C v+ of length 2rk−1 would

have both of its endpoints in L, contradicting the second statement of this
proposition.

Each vertex in L has at most 2rk − 3 neighbours in C and therefore at least
k − (2rk − 3) neighbours in SR. From this we can estimate size of SR, which
gives us a bound on the size of SC . SpeciĄcally, we have

(1− r)n−♣SC ♣ ≥ ♣S♣ − ♣SC ♣ = ♣SR♣ ≥ ♣A♣(k − 2rk + 3)

= (♣L♣ − ♣SC ♣)(k − 2rk + 3) ≥ (rn− ♣SC ♣)(k − 2rk + 3).

By rearranging the terms we get

♣SC ♣(k − 2rk + 2) ≥ (k − 2rk + 3)rn− (1− r)n,

hence

♣SC ♣ ≥
k − 2rk + 2 + 1

k − 2rk + 2
rn− 1− r

k − 2rk + 2
n

= rn− 1− 2r

k − 2rk + 2
n > rn− 1− 2r + 2/k

k − 2rk + 2
n = rn− n

k
.

But we know that k > n
2
, therefore ♣SC ♣ > rn−2. From this we Ąnally deduce

a contradiction with the size of C.

♣C♣ = ♣L♣+ ♣SC ♣ ≥ rn + rn− 1 = 2rn− 1 ≥ 2rk − 1.

We are now ready to prove Theorem 5.1.

Proof. We know that G contains a path on 2rk vertices. By Proposition 5.3 (1) we know
that both endpoints of the path are in S, thus after trimming the endpoints we get a

path
−→
P = u

−→
P v on 2rk − 2 vertices such that u, v ∈ L.

The neighbours of u and v outside P cannot lie in L and they cannot have L-
neighbours outside P , since otherwise we would have a path on at least 2rk− 1 vertices
with both endpoints in L, contradicting Proposition 5.3 (2).
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DeĄne W1 = N(u) \ P and W2 = N(v) \ P . It must hold that W1 ∩W2 = ∅, because

if there were a vertex w ∈ W1 ∩W2, the cycle u
−→
P vw would contradict Proposition 5.3

(4).
We now bound the number of edges between the set ¶u, v♢ and P . There cannot be a

vertex w ∈ P such that both edges uw and vw− are present in G, because then the cycle

uw
−→
P vw−←−P u would contradict Proposition 5.3 (5). Using a simple pairing argument we

infer that there are at most ♣P ♣ − 1 ≤ 2rk − 3 edges between ¶u, v♢ and P . Thus,

♣W1♣+ ♣W2♣ ≥ 2k − (2rk − 3) = 2k − 2rk + 3.

Now we can use Lemma 2.3 to bound the size of N(W1 ∪W2). We have

♣N(W1 ∪W2)♣ > r♣W1 ∪W2♣ = r(♣W1♣+ ♣W2♣) ≥ r(2k − 2rk + 3). (5.1)

Now let D = (N(W1) \ u)− ∪ (N(W2) \ v)+. At Ąrst note that D ⊆ S. Indeed, if there

were a vertex w ∈ N(u) and its neighbour t such that t− ∈ L, the path t−←−P uwt
−→
P v of

length 2rk − 1 would contradict Proposition 5.3 (1). Thus D ∩N(W1 ∪W2) = ∅.
Finally we observe that N(W1)

− ∩ N(W2)
+ = ∅. Indeed, if there were w ∈ P such

that w+ ∈ N(W1) and w− ∈ N(W2), we could Ąnd a cycle usw+−→P vtw−←−P u of length
2rk−1 contradicting 5.3 (4). Consider the mapping from N(W1∪W2) to D that assigns
each vertex from N(W1)\u its predecessor and each vertex from N(W2)\v its successor.
This mapping is injective and its image is disjoint from its domain. Hence we can bound
the number of vertices of P as follows:

♣P ♣ ≥ ♣N(W1 ∪W2) ∪ (N(W1) \ u)− ∪ (N(W2) \ v)+♣
≥ ♣N(W1 ∪W2)♣+ ♣N(W1 ∪W2)♣ − 2

= 2♣N(W1 ∪W2)♣ − 2

≥ 2r(2k − 2rk + 3)− 2 = 4rk − 4r2k + 6r − 2

= 2rk − 2 + 2rk(1− 2r) + 6r > 2rk − 2,

so P is a path on at least 2rk − 1 vertices, a contradiction.

5.2 Proof of Theorem 5.2

To give an intuition behind the algorithm, we start by stating the well-known algorithm
of Erdős and Gallai that can be used to verify that the Erdős-Sós conjecture holds for
paths via Lemma 2.2.

Theorem 5.4. There is an algorithm that for a graph G finds its path of length
min(2δ(G) + 1, ♣V (G)♣) in time O(m).

Proof. We provide such an algorithm. In the ith step of the algorithm we have found a
subgraph Ti ⊆ G1 that is either a path or a cycle. We do the following:

1. Suppose that Ti = u
−→
T iv is a path on at most 2δ(G) vertices. If there exists a

vertex w ̸∈ Ti adjacent to either u or v, we prolong Ti by adding to it this adjacent
vertex. If there is w ∈ Ti such that uw and w−v are edges in G we deĄne Ti+1 as

the cycle u
−→
T iw

−v
−→
T iwu. If neither of these cases occurs we get by a simple pairing

argument that deg(u) + deg(v) ≤ ♣Ti♣ − 1 ≤ 2δ(G)− 1, a contradiction.

1Note that for notational convenience we use the same symbol both for a path and a cycle which is

a difference compared to the notation from Chapter 5.
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2. Suppose that Ti is a cycle not spanning the whole G. Then we Ąnd a vertex a ̸∈ Ti

adjacent to a vertex w ∈ Ti. The desired path Ti+1 is then aw
−→
T iw

−.

The algorithm starts with an arbitrary edge uv and stops when the path/cycle Ti has
length min(2δ(G), ♣V (G)♣). The number of steps is at most twice the number of vertices
of the Ąnal path.

If we use suitable data structures, the time complexity of each step is either O(δ(G))
or O(δ(G)) + deg(v) if we add a vertex v to Ti. Thus, the total time complexity can be
then estimated as

O(δ(G)2 +
∑

v∈G

deg(v)) ⊆ O(nδ(G) + m) ⊆ O(m).

We are now ready to prove Theorem 5.2. Prepare for the worst. At Ąrst we give
its high-level overview. Then we introduce invariants that will be preserved during the
run-time of the algorithm and sketch the necessary data structures. We continue by
describing the algorithm as a sequence of steps. In the end we at Ąrst bound the number
of steps executed by the algorithm, thus proving its correctness, and Ąnally deduce that
its time complexity is, indeed, the one advertised above. Because specifying all the
details of the algorithm would be quite tedious and it is far from the aim of this thesis
we knowingly omit several implementation details and encourage the interested reader
to Ąll in the gaps.

Overview The algorithm we are going to sketch follows the proof of Theorem 5.1 and
we will several times refer to speciĄc places in its proof. The algorithmic idea is the same
as the one behind the algorithm from Theorem 5.4. More speciĄcally, we work with a
subgraph Ti ⊆ G that is either a path or a cycle and we gradually try to make it longer
in a greedy manner. However, there are several additional diiculties:

• Although we still without loss of generality assume that 2rk ∈ N we can no longer
assume that G is a minimal counterexample. Thus, in each step we rather work
with a graph Gi ⊆ G. Sometimes we get Gi+1 by erasing several edges or vertices
of Gi while maintaining that each such Gi is an (r, k)-LKS graph.

• We will have to consider more cases than in Theorem 5.4. Sometimes it can happen
that we only replace a vertex from our path/cycle by another one and it may even
happen that the size of Ti is reduced. In one speciĄc case we forget the whole Ti

and start anew from the beginning. Thus, to bound the number of steps of the
algorithm, we introduce several invariants and use amortisation arguments.

• Because we aim for linear time complexity, we cannot aford to start the search for
the desired path every time we delete some vertices or edges from Gi. Although we
will never erase a vertex from Ti it may well happen that a vertex inside Ti becomes
an S-vertex and thus Ti contains an edge between two S-vertices. This forces the
following technical diiculty: it will no longer hold that there are no edges between
S-vertices of Gi but there can be such edges only between consecutive vertices of
Ti. Fortunately, this technical issue does no afect the analysis of the algorithm
signiĄcantly.
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The algorithm works in steps and for the sake of the analysis of its time complexity
is divided into two epochs. Each step consists of Ąnding desired ConĄgurations from
Theorem 5.1 that we, for the sake of clarity, group into short procedures that we call
Configurations. Each ConĄguration is successful if we manage to Ąnd Ti+1 during the
course of the procedure. The overall structure of the algorithm can be found in Figure
5.2. If we succeed in Ąnding one of the desired ConĄgurations we update our path/cycle
as well as other corresponding data structures. If we do not Ąnd any desired improving
ConĄguration, we delete several vertices or edges from Gi or we delete several edges
between S-vertices contained in Ti.

We will show that the time complexity of most of the steps scales with k plus the
sum of degrees of L-vertices from Ti+1 \Ti plus the number of deleted vertices and edges
from Gi. The exceptions are the steps in which we run ConĄguration 3 and those will
be treated separately.

Data: An (r, k)-LKS graph G
Result: a path P embedded in G on 2rk + 1 vertices
Epoch 1: while ♣Ti♣ ≤ 2rk + 1 do

if Ti is a path then
run ConĄguration 1, if successful then continue;
run ConĄguration 2, if successful then continue;
run ConĄguration 3, if successful then continue;
erase all vertices from Ui;

else
if N(Pi) \ Ui is not empty then

run ConĄguration 4, if successful then continue;
erase several leaf-neighbours of a vertex not in Ti;

else
compute the ratio r′ of number of L-vertices in the graph Ti ∪ Ui;
if r′ ≥ r then goto Epoch 2;
delete all vertices from Ti ∪ Ui and set Ti+1 = ∅;

end

end

end
Epoch 2: while ♣Ti♣ ≤ 2rk + 1 do

if Ti is a path then
run ConĄguration 1 /* always successful */

else
run ConĄguration 5 /* always successful */

end

end
Algorithm 1: The algorithm from Theorem 5.2.

Notation, invariants, data structures We use the following notation. The set of
L-vertices of Gi is called Li, its set of S-vertices is Si and ni := ♣V (Gi)♣. We denote
by Ui the set of neighbours of Ti such that all their L-neighbours are in Ti. Note that
all vertices of Ui are S-vertices. Following invariants will hold during the course of the
algorithm.
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1. Ti contains at least one L-vertex. If Ti is a path then both of its endpoints are
L-vertices.

2. Gi is an (r, k)-LKS graph. We do not require Gi to be connected and there can
be edges between its S-vertices but such are always between consecutive vertices
of Ti.

3. (Ti \Ti+1)∩Gi+1 ⊆ Si+1 and (Ui \Ui+1)∩Gi+1 = ∅. In other words, vertices erased
from Ti are always S-vertices in the new host graph and a vertex can get of the
set Ui only by being erased from Gi.

4. At least one of any two consecutive vertices of Ti was an L-vertex in the step j < i
in which it was added to Tj.

5. ♣Ui♣ ≤ 2k.

6. In Epoch 1 if Ti is a non-empty cycle then the set N(Ti) \ (Ui ∪ Ti) is non-empty.

7. In Epoch 2 all L-vertices of Gi are also in Ti.

We will not argue separately for each invariant that it holds during the whole course
of the algorithm. We encourage the reader to do so after she reads the description of the
algorithm.

We continue by sketching main data structures that we are going to use. The
main structures needed will be several lists Ű each v ∈ V (Ti) stores the following lists:
Neighbours containing all neighbours of v, LNeighbours containing all of its neighbours
in L , TNeighbours containing all neighbours in Ti, and Ąnally LL+Neighbours1 and
LL−Neighbours. Each v ∈ Ui stores the list of its L-neighbours such that their predeces-
sor on Ti or their successor on Ti, respectively, is also an L-vertex. There is also the list
Tvertices containing the vertices of Ti sorted according to their order in Ti and several
others. For each list we also store its inverse counterparts. This means that every vertex
has lists with information, for what other vertices it is in their list Neighbour, TNeigh-
bour, . . . One can observe that we can add or delete vertex u from Ti or erase several
incident edges and change its state to an S-vertex or erase the vertex entirely from Gi,
and updating the corresponding information in all lists can be done in time O(deg(u)).

If we change the state of a vertex from L to S we change appropriate data structures,
erase edges connecting the vertex to its S-neighbours (unless they are its neighbours in Ti)
and we also recursively check all of its S-neighbours and potentially do the same. Observe
that the amortised cost of all of these operations is bounded by O(

√

v∈L deg(v)) = O(m).

Epoch 1

In the next two sections we Ąnally give a description of the algorithm. At several places
we refer to the proof of Theorem 5.1. Delete all edges between S-vertices of G and
continue by repeating the following steps until the size of Ti is suicient or until we
proceed to Epoch 2. If Ti is empty, we deĄne Ti+1 as an edge between two L-vertices

(the case, when there is none, is easy). Suppose that Ti is a path. Set
−→
T i = u

−→
T iv.
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ConĄguration 1 If there is an L-neighbour w of u or v, respectively, we set Ti+1 =

wu
−→
T iv or Ti+1 = u

−→
T ivw, respectively. If this does not happen, but there is an S-

neighbour w of u or v, respectively, such that w has an L-neighbour t outside of Ti, we

set Ti+1 = twu
−→
T iv or Ti+1 = u

−→
T ivwt, respectively. If there is w ∈ Ti such that there

are two edges uw and vw− in Gi, we set Ti+1 as the cycle uw
−→
T ivw−←−T iu. With some

care the whole process can be done in time O(k).

ConĄguration 2 If there are w ∈ N(u) ∩ Ui and t ∈ Ti such that wt is an edge in Gi

and, moreover, t− is an L-vertex, we deĄne Ti+1 as t−←−T iuwt
−→
T iv and similarly for the

other case. The existence of such ConĄguration can be checked in time O(k) if we use
the lists LL+Neighbours1, or LL−Neighbours, respectively.

ConĄguration 3 In this ConĄguration we search for three vertices s, t, and w such
that s ∈ N(U)∩Ui, t ∈ N(v)∩Ui, w ∈ Ti and, further, sw+ and tw− are edges of Gi. In

this case, we get a cycle Ti+1 as u
←−
T iw

−tv
−→
T iw

+su.
The existence of such ConĄguration can be checked in timeO(k+♣e(Ui, Ti)♣) = O(rk2)

by at Ąrst enumerating the L-neighbours of N(u)∩Ui and labeling those L-vertices and
then enumerating L-neighbours of N(v) and checking whether their double successor is
already labeled.

If we were not successful in any of the preceding ConĄgurations, we observe that we
can follow the arguments from Theorem 5.1 and get that r♣Ui♣ > ♣Ti♣. If this inequality
is, indeed, satisĄed, we delete the whole Ui while keeping the LKS property of Gi+1

(Lemma 2.3).
We continue with the case when Ti is a cycle. If the set N(Ti)\ (Ui∪Ti) is empty, we

check in time O(k), whether the proportion of L-vertices to all vertices in the component
of Gi induced by Ti ∪ Ui at least r. If it is so, we delete all other vertices of Gi and
proceed to Epoch 2. Otherwise we delete all vertices from Ti∪Ui and start again with an
empty Ti+1. Invariant 4 ensures that the number of L-vertices of G that we have deleted
is proportional to the size of Ti. The graph Gi+1 is still an (r, k)-LKS graph. Now we
assume that there is a vertex u ̸∈ Ti with a neighbour in v ∈ Ti but N(u) ̸⊆ Ti. In the
following ConĄguration we create a path Ti+1 containing u, or erase all neighbours of u
that are not in Ti.

ConĄguration 4

Suppose that u has an L-neighbour w ̸∈ Ti. Now consider path wuv
−→
T iv

− of length
♣Ti♣ + 2. We trim all the S-vertices from the end of this path and possibly delete some
edges between S-vertices that were contained in Ti. We set Ti+1 to be this resulting path.
Note that either we have trimmed at most one vertex and Ti+1 is longer than Ti or the
number of trimmed vertices is proportional to the number of deleted edges between two
S-neighbours in Ti. Every S-vertex from N(Ti) \ (Ui ∪ Ti) has an L-neighbour outside
of Ti. Therefore, we further assume that u is an L-vertex with no L-neighbours outside
of Ti. If u has an S-neighbour w ̸∈ Ti, it is either a leaf or it has another L-neighbour
t ̸∈ Ti (neighbours in Ti would give the previous ConĄguration). If it has such neighbour
t, we solve this ConĄguration analogously to the Ąrst ConĄguration of this ConĄguration

using the path twuv
−→
T iv

−. If u has a neighbour w in Ti such that w+ or w−, respectively,

is an L-vertex, we get Ti+1 as a path uw
−→
T iu

+ or uw
←−
T iu

−, respectively. If both v+ and

v++ are S-vertices, we deĄne Ti+1 as the path uv
←−
T iv

+ without the consecutive sequence
of S-vertices at the end of it. We delete edges between S-vertices. Such path is shorter
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than Ti but the number of trimmed vertices is again linear in the number of deleted
edges between S-vertices from Ti. We proceed in an analogous manner if both v− and
v−− are S-vertices. If we do not Ąnd any of these ConĄgurations, there are no two
neighbours of u in Ti that are at distance one or three apart. We Ąnally deal with the
case when two neighbours of u in Ti are at distance two apart. If we have v ∈ Ti such

that u is incident both with v and v++, we deĄne Ti+1 as the cycle vuv++−→T iv that is of
same length as the cycle Ti but possess more L-vertices. Note that both v and v++ are
L-vertices, otherwise we would get the preceding ConĄguration. Further we may assume
that any two neighbours of u in P i are at least at distance four apart. Now we use the
arguments from the Ąrst part of the proof of the statement 5 of the Proposition 5.3 that
there are at least 1/r leaf neighbours of u. We delete this set of leaves and keep Gi+1 an
(r, k)-LKS graph according to Lemma 2.3.

All this can be done in time O(k) plus the degree of potentially added L-vertices.

Epoch 2

The Epoch 2 is conceptually similar to the Ąrst one. We know that all L-vertices of Gi lie
in Ti, which means that Gi has to be small. SpeciĄcally, 2rk > ♣Ti♣ ≥ ♣Li♣ ≥ rni implies
that ni < 2k. Furthermore, we get that ♣Si♣ ≤ (1− r)ni < 2(1− r)k. If Ti is a path we
proceed in the same manner as in Epoch 1 but we always succeed in ConĄguration 1,
because otherwise we would have ♣Si♣ ≥ ♣(N(u)∪N(v))∩Ui♣ ≥ 2(1−r)k+3 contradicting
the preceding inequality.

If Ti is a cycle and contains at least one consecutive pair of S-vertices, we delete the
whole interval of S-vertices in Ti containing this pair, making Ti+1 a path. Note that
the number of vertices trimmed from Ti is then linear in the number of deleted edges
between S-vertices from Ti. Otherwise we proceed with the last ConĄguration.

ConĄguration 5 If there are two vertices u, v ∈ Ti such that u, u+, v, v+ ∈ Li and
moreover there is w ̸∈ Ti incident with both u and v we deĄne Ti+1 as the path

u+−→T ivwu
←−
T iv

+.
If this does not happen we can follow the proof of Proposition 5.3 parts 4b and 5b

and infer that we either get a longer path Ti+1 (part 4b) or get a contradiction with the
bound on size of Ti. All this can be done in time O(k).

Time complexity analysis

We will at Ąrst bound the number of steps done by the algorithm. Note that whenever
we deleted vertices from Ti, except of ConĄguration 3, we argued that the number is
proportional to the number of deleted edges between two S-neighbours in Ti. Because of
invariant 4 we, thus, get that the overall amount of vertices deleted in all of these steps
is O(♣L♣) and the number of these steps is also bounded by O(♣L♣).

This means that the number of steps with ♣Ti+1♣ > ♣Ti♣ is also O(♣L♣). Finally, in
some steps we have ♣Ti+1♣ = ♣Ti♣ and we have not trimmed any vertices from Ti. Then we
either switched an S-vertex with an L-vertex (ConĄguration 4) or created a cycle from
a path. Number of steps of the Ąrst kind is at most ♣L♣ because of invariant 3. Finally,
there cannot be two consecutive steps of the algorithm of the second kind, so we Ąnally
get that the overall number of steps done is O(♣L♣). This also concludes the proof of
correctness of the algorithm.
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Now we analyse the complexity of steps of the algorithm. Note that, as we mentioned
earlier, the complexity of all deletion operations can be amortised and its time complexity
sums up to O(m). Now let us consider all steps of the algorithm in which we do not
execute ConĄguration 3. All other ConĄgurations and updating of used data structures
spend time proportional to k plus the sum of degrees of L-vertices added to Ti+1. By
invoking invariant 3 we conclude that the overall time complexity of all such steps is
O(♣L♣k) ⊆ O(m).

It remains to deal with the steps in which we executed ConĄguration 3. At Ąrst note
that this means that we are analysing only the Ąrst Epoch. Further, when we, after
the unsuccessful execution of ConĄguration 3, decided to erase S-neighbours of u and
v, the time spent on the procedure is proportional to the number of erased edges and
can be, thus, amortised in a straightforward manner. From now on let us consider only
such steps that ended by successful execution of ConĄguration 3, thus setting Ti+1 as
the cycle created from the path Ti. We will call these steps bad steps.

Each bad step runs in time O(rk2). We claim that between every two consecutive
bad steps we have added at least (1−2r)k vertices to Ui. For this we invoke the following
observation: if Tj is a cycle and in steps j, j +1, . . . , j′ we do not execute ConĄguration 2
(thus, we do not execute ConĄguration 3 neither) then Ti, j ≤ i ≤ j′ is either a cycle or a
path with at least one endpoint outside Tj. This can be seen by checking the procedures
ConĄguration 1 and ConĄguration 4. Note that this observation fails for ConĄguration
5 which is the reason for dividing the algorithm in two Epochs. When we are executing
ConĄguration 2 we know that both endpoints of Ti have at least (1 − 2r)k neighbours
in Ui. But we know that the neighbours of the endpoint that was not in Tj could not be
in Uj, thus ♣Ui \ Uj♣ ≥ (1− 2r)k.

Therefore the number of bad steps is at most n
(1−2r)k

+1. Thus, the overall time spent

on all these steps is O( 1
1−2r

n
k
· rk2) = O( 1

1−2r
nrk) = O( 1

1−2r
m). For r = 1/2 we still

get complexity O(m + ♣L♣rk2) = O(mk). This Ąnishes the analysis of time complexity.
Finally note that the space complexity is linear even for r = 1/2.
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Chapter 6

Conclusion

The thesis may be seen as an illustration of the remarkable power of the celebrated
regularity lemma. Indeed, this deep result allows us not only to understand the structure
of dense graphs, but also to apply this knowledge to solve various problems that seem
otherwise hopelessly unapproachable. Embedding trees is certainly one of such problems.

The sparse decomposition of Ajtai, Komlós, and Szemerédi [HPS+15] shows, how an
extremal graph theoretical question may lead to a general structural result. Hopefully,
the results of the thesis will also eventually lead to better understanding of the structure
of graphs.
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