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A LOCAL APPROACH TO THE ERD\H OS--S\'OS CONJECTURE\ast 

V\'ACLAV ROZHO\v N\dagger 

Abstract. A famous conjecture of Erd\H os and S\'os states that every graph with average degree
more than k - 1 contains all trees with k edges as subgraphs. We prove that the Erd\H os--S\'os conjecture
holds approximately, if the size of the embedded tree is linear in the size of the graph, and the
maximum degree of the tree is sublinear.
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1. Introduction. Typical problems in extremal graph theory ask how many
edges in a graph force it to contain a given subgraph. A classical example of a result in
this area is Tur\'an's theorem, which determines the average degree that guarantees the
containment of the complete graph Kr. A more complex example is the Erd\H os--Stone
theorem [12], which essentially determines the average degree condition guaranteeing
that the host graph contains a fixed nonbipartite graph. On the other hand, for a
general bipartite graph the problem is wide open. If the embedded graph is a tree, the
celebrated conjecture of Erd\H os and S\'os asserts that an average degree greater than
k  - 1 forces a copy of any tree of order k + 1.

Conjecture 1.1 (the Erd\H os--S\'os conjecture). Every graph G with deg(G) >
k  - 1 contains any tree on k + 1 vertices.

Here deg(G) means the average degree of G; similarly, we denote the minimum
and the maximum degree of G by \delta (G) and \Delta (G), respectively.

Observe that the conjecture is optimal, since a graph with average degree at most
k  - 1 may have only k vertices. Also observe that if we replace the condition on the
average degree by a stronger condition \delta (G) > k  - 1, the conjecture becomes trivial,
since we can embed any tree on k + 1 vertices in G in a greedy manner---every time
we embed a vertex of the tree such that its neighbor is already embedded; since the
neighborhood of the already embedded vertex is sufficiently large, we may always do
that. Note that each graph with average degree deg(G) \geq 2k contains a subgraph
with \delta (G) \geq k. Such a subgraph can be found by repeatedly deleting vertices of
degree smaller than k from G. Hence, the conjecture also holds trivially if we allow
ourselves to lose a factor of 2.

After one verifies that the Erd\H os--S\'os conjecture is true for both trees of diameter
at most three and for paths (this was done already by Erd\H os and Gallai in 1959 [13])
one can observe that such trees can be embedded even in the case when the host graph
contains a vertex of degree at least k and its minimum degree is at least k/2. This
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Fig. 1. A tree on k + 1 vertices and two host graphs of the same size showing that there are
graphs with \Delta (G) = k and \delta (G) \geq k/2 that do not contain a tree on k + 1 edges. The tree consists
of a vertex connected to centers of three stars with k

3
 - 1 leaves. The first host graph consists of a

vertex complete to two complete graphs on k
2

vertices, while the second graph consists of a vertex

complete to a complete bipartite graph with two color classes with k
2

vertices. The example is taken
from [18].

is trivial for trees of diameter at most three, while for the case of paths this follows
from the mentioned proof of Erd\H os and Gallai.

While this local condition on the minimum and maximum degree of G suffices for
both of these special cases, it already fails for trees of diameter four, as is demonstrated
by the following example from [18]. Let T be a tree consisting of a vertex connected
to centers of three stars on k/3 vertices and let G be a graph consisting of a vertex
complete to either two cliques of size k/2, or Kk/2,k/2. Then \Delta (G) \geq k and \delta (G) \geq 
k/2, but T is not contained in G (see Figure 1). This example shows that it would
be na\"{\i}ve to try to prove the Erd\H os--S\'os conjecture in the most general setting using
only the local consequence of the bound on the average degree on the maximum and
minimum degree of G. We will actually show in section 2.1 that trees of diameter
at most three and paths are special cases. Proposition 2.1 states that with high
probability, a random tree on k + 1 vertices cannot be embedded in the host graph
with two cliques from Figure 1.

Despite this fact, we devote this paper to this local approach to the Erd\H os--S\'os
conjecture. We are interested in the following question: if the host graph contains
a certain amount of vertices of degree at least roughly k and its minimum degree is
at least roughly k/2, can we embed all trees of order k in the graph? We partially
answer this question for dense graphs, which in turn implies an approximate version
of the Erd\H os--S\'os conjecture.

1.1. Main result of this paper. The main positive result of this paper is the
following theorem.

Theorem 1.2. For any \eta > 0 there exists n0 and \gamma > 0 such that for every
n > n0 and k > 0, any graph of order n with average degree deg(G) \geq k+\eta n contains
every tree on k vertices with maximum degree \Delta (T ) \leq \gamma k.

Another way to state this result is the following. Suppose that we have a class of
trees \scrT such that there exists a function f, f(n) \in o(n) with \forall T \in \scrT : \Delta (T ) \leq f(| T | ).
Then there is another function g, g(n) \in o(n) such that every graph with average
degree k + g(n) contains any tree from \scrT on at most k vertices.

Theorem 1.2 is trivial if k \leq \eta n/2, since, as we already mentioned, a graph with
average degree at least \eta n contains a subgraph with minimum degree at least \eta n/2
and we can then embed T greedily in the subgraph. Hence, we interpret this result as
one for trees of size linear in the size of the host graph: only for trees of size linear in
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the size of the host graph this result is nontrivial. Another viewpoint is to consider
this as a result for dense graphs: the additive error term +\eta n ensures that G contains
at least \eta n2/2 edges, hence it is dense.

We in fact prove a stronger result---Theorem 1.3---that we first describe less for-
mally. If we fix r = 1/2 in the statement of Theorem 1.3, then it states that one can
embed any tree with k vertices from a class of trees with sublinear maximum degree
in every large enough host graph that fulfills two conditions:

1. there is positive proportion of vertices of degree at least roughly k,
2. the minimum degree is at least roughly k/2.

Additionally we get the following trade-off. If our class of trees satisfies that the size
of the smaller color class of any tree T from the class is bounded by r| T | , it suffices to
assume that the minimum degree of the host graph is at least roughly rk. Also, only
the vertices of the bigger color class are required to have bounded maximum degree.

Theorem 1.3. For any r, \eta > 0 there exist n0 and \gamma > 0 such that the following
holds. Let G be a graph of order n > n0 and T a tree of order k with two color classes
V1, V2 such that | V1| \leq rk and \forall v \in V2 : deg(v) \leq \gamma k. If \delta (G) \geq rk+ \eta n, and at least
\eta n vertices of G have degree at least k + \eta n, then G contains T .

As in the case of Theorem 1.2, this theorem is nontrivial only for trees of size
linear in the size of the host graph.

We postpone a simple reduction of Theorem 1.2 to Theorem 1.3, as well as some
further remarks regarding the theorem, to section 2.

We believe that Theorem 1.2 for r = 1/2 can be substantially generalized and put
this generalization as a conjecture. Motivation of this conjecture is the question of
how many vertices of degree at least k are needed to embed any tree on k+1 vertices
if we moreover assume that the minimum degree is at least k/2.

Conjecture 1.4 (Klimo\v sov\'a, Piguet, Rozho\v n). Every graph G on n vertices
with \delta (G) \geq k/2 and at least 1

2 \cdot 
n\surd 
k
vertices of degree at least k contains every tree of

order k + 1.

We postpone to section 2 the construction that shows that the constant 1
2 in

Conjecture 1.4 cannot be improved.

1.2. Relation of this paper to other work. There are many partial results
concerning the Erd\H os--S\'os conjecture. It has been verified for some special families of
host graphs [4, 9, 11, 28, 32], special families of trees embedded [14, 15, 25], or when
the size of the host graph is only slightly larger than the size of the tree [17, 30, 33].

A solution of this conjecture for large k, based on an extension of the regularity
lemma, was announced in the early 1990s by Ajtai, Koml\'os, Simonovits, and Sze-
mer\'edi. This result will be published as a sequence of three papers [1, 2, 3]. Although
Theorem 1.2 is only a special case of this announced result, we still believe that it is
of interest, since its proof is relatively straightforward.

A similar approach to ours was recently independently used in [7] to obtain a
result very similar to Theorem 1.2. The only difference is that the authors of [7]

require the maximum degree of the respective tree to be less than k
1
67 instead of o(k)

as in Theorem 1.2. The follow-up work [5, 6] then independently proves Theorem 1.2.
The idea to study embedding of trees under conditions on the minimum and

maximum degree comes from the paper [18] and was later developed in [5, 6, 7, 8].
In a preliminary version of this paper we conjectured in this direction, together with
Klimo\v sov\'a and Piguet, that any graph G that satisfies \Delta (G) \geq 4k/3 and \delta (G) \geq k/2
embeds any tree on k + 1 vertices, but this was shown to be false in [8].
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To prove Theorem 1.3 we employ the so-called regularity method, which is a
relatively standard method used for embedding trees. This method was successfully
used for proofs of similar results, notably for the sequence of results [10, 19, 20, 21,
22, 23, 26, 34] on the so-called Loebl--Koml\'os-S\'os conjecture that asserts that each
graph with at least half of vertices of degree at least k contains any tree on k + 1
vertices.

Simonovits conjectured that one can generalize the statement of the Loebl--Koml\'os-
S\'os conjecture. The Simonovits conjecture states that if one assumes that only r| G| 
vertices (0 \leq r \leq 1

2 ) of the host graph G have degree at least k, one can still embed in
G all trees of order k+1 such that their smaller color class has size at most r(k+1).
The dense approximate version (i.e., the necessary degree is replaced by k+\eta n instead
of just k) of this conjecture was proven in [24]. The authors used the word skew to
denote the ratio r of the size of the smaller color class of the tree and the size of the
tree itself. We adopt this notation.

Note that the spirit of the Simonovits conjecture is the same as the spirit of
Theorem 1.3, i.e., one can generalize an embedding theorem by considering the skew
of the embedded tree as an additional parameter. Highly skewed trees (trees with very
small r) can then (at least in the dense approximate setting) be embedded under much
milder conditions than general trees. This suggests that the skew of the embedded
tree could be considered as a natural parameter showing how hard it is to embed
the given tree. For example, the star is an extremely skewed tree that is very easy
to embed. On the other hand, the example tree in Figure 1 is also highly skewed,
although it is a hard example for certain embedding setting. The usefulness of this
parameter is thus yet to be determined.

1.3. Organization of the paper. The paper is organized as follows. In the
next section we deduce Theorem 1.2 from Theorem 1.3 and provide several remarks
and constructions relevant to the results mentioned in the introduction. In section 3
we explain standard tools that we later use for the proof of Theorem 1.3. Finally, in
section 4 we prove Theorem 1.3.

2. Proof of Theorem 1.2 and further remarks. In this section we prove
Theorem 1.2 and then further elaborate on several topics already mentioned in the
introduction.

Proof of Theorem 1.2. Let \eta \prime = \eta /2 and let G be a graph on n \geq n0 =
n0,T1.3(\eta 

\prime )
\eta 

vertices. Here n0,T1.3(\eta 
\prime ) means the output of Theorem 1.3 with input \eta \prime and r = 1/2.

Suppose that k \geq \eta n/2.
We choose a subgraph G\prime \subseteq G such that deg(G\prime ) \geq k+\eta n and \delta (G\prime ) \geq k/2+\eta n/2.

Hence, we know that the size of G\prime is at least k + \eta n \geq \eta n \geq n0,T1.3.
We claim that at least \eta \prime | G\prime | vertices of G\prime have degree at least k+\eta \prime n and hence

we may apply Theorem 1.3. If this was not true, most of the vertices of G\prime would
have degree less than k + \eta \prime n and hence

deg(G\prime ) \leq \eta \prime \cdot n+ (1 - \eta \prime ) \cdot (k + \eta \prime n) < \eta \prime n+ (k + \eta \prime n) = k + 2\eta \prime n = k + \eta n,

a contradiction.

2.1. A graph in Figure 1 fails to embed a random tree. We observe that
the example graph with two cliques in Figure 1 not only fails to embed the tree from
the same figure but it actually fails to embed most trees.
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k=2 + ηn k=2 + ηn

rk + ηnrk + ηn

ηn

Fig. 2. Example showing that the condition on bounded degree is needed in the statement of
Theorem 1.3.

Proposition 2.1 (see [31]). For even k the probability that a random unlabeled
tree of size k + 1 can be embedded in the graph G consisting of a vertex complete to
two cliques of size k/2 is in O(k - 1/2).

Proof. We at first classify trees on k + 1 vertices that can be embedded in G. A
vertex u \in T is a centroid if after removing it from T we obtain a family of trees such
that each tree is of size at most k/2. Since the size of the graph is the same as the
size of the tree that we embed, only a centroid of T can be embedded in the vertex
of G complete to all other vertices. Since k + 1 is odd, the centroid of the tree is
unique. Hence, T can be embedded if and only if the subtrees created after removing
its centroid can be partitioned into two classes such that the number of vertices in
each class is k/2. We call such trees balanced.

Let rk be the number of unlabeled rooted trees with k vertices. A formula of
Otter (see, e.g., [16, p. 481]) states that rk = \Theta (k - 3/2 \cdot Bk) for some positive constant
B. Similarly, the number of unlabeled unrooted trees sk is in \Theta (k - 5/2 \cdot Bk) for the
same constant B (again [16, p. 481]).

Note that the number of balanced trees of order k+1 is at most r2k/2+1, since each

such tree can be decomposed into two rooted trees with k/2 + 1 vertices each. Hence
the number of balanced trees is in O(k - 3Bk). Comparing this with the sequence sk,
we conclude that the probability that a random unlabeled tree is balanced goes to 0
at a rate of at least k - 1/2.

2.2. Remark about tightness of Theorem 1.3. Although the condition on
the maximum degree \Delta (T ) in Theorem 1.2 is probably not necessary, it is crucial for
Theorem 1.3. We show in the following claim that Theorem 1.3 fails when we drop
the assumption on the sublinear degree of T .

Claim 2.2. Suppose that 0 < r < 1
3 . Then there is \eta > 0 such that there is a

graph G on n vertices and a tree T on k vertices with the following properties. The
minimum degree of G is at least rk+ \eta n and it contains at least \eta n vertices of degree
k+\eta n. One color class of T contains at most rk vertices. Finally, G does not embed T .

Proof. Suppose 0 < r < 1/3 and pick \eta > 0 to be sufficiently small depending on
the value of r.

Let G be a graph on n vertices consisting of two disjoint copies of complete
bipartite graphs with color classes of sizes rk + \eta n and k/2 + \eta n. Moreover, \eta n
additional vertices are complete to both larger color classes of the two bipartite graphs
(see Figure 2). This implies that k = 1 - 5\eta 

1+2rn; for simplicity we do not address the
rounding issues regarding k.
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Let T be a tree on k vertices consisting of a vertex x complete to centers of rk
stars of sizes \lfloor 1

r \rfloor and \lceil 1
r \rceil .

The smaller color class of T has size rk. Note that for fixed r the maximum degree
of this smaller color class of T is constant. However, it is not true for the larger color
class, hence Theorem 1.3 does not apply. We claim that the tree T is not contained
in G if we have chosen \eta to be sufficiently small.

Suppose that there is an embedding of T in G. The graph G is bipartite with one
color class of size at most 2rk + 3\eta n. Since k is linear in n and r < 1

3 , we can choose
\eta small enough depending on r so that this expression is less than (1  - r)k. Hence,
the vertex x must be embedded in the larger color class. Out of (1  - r)k  - 1 leaves
at least (1  - r)k  - 1  - \eta n \cdot \lceil 1

r \rceil > k/2 + \eta n have to be embedded in the same set of
size k/2 + \eta n as x, a contradiction with the assumption that G embeds T .

Theorem 1.3 is thus an example of an asymptotic result that does not seem to have
a natural exact strengthening. On the other hand, we believe that the assumption on
the sublinear maximum degree in Theorem 1.3 can be dropped in the case r = 1/2.
This would mean that the dense asymptotic version of the Erd\H os--S\'os conjecture could
be proven by this local approach.

2.3. The constant \bfone 
\bftwo 
in Conjecture 1.4 cannot be improved. The following

example shows that the constant 1
2 in Conjecture 1.4 is best possible.

Let k > 1 be an odd square and T be a tree of order k + 1 consisting of a vertex
connected to centers of

\surd 
k stars on

\surd 
k vertices. Let G be a graph consisting of

two disjoint cliques of order k - 1
2 and k+1

2 and an independent set of
\surd 
k - 1
2 vertices

complete to both cliques. A simple calculation shows that the proportion of high
degree vertices of G is \surd 

k - 1
2

k +
\surd 
k - 1
2

<
1

2
\surd 
k
.

On the other hand, note that for any c < 1 the left-hand side is larger than c
2
\surd 
k
for

sufficiently large k. We will check that G does not contain T , which in turn shows that
the expression n

2
\surd 
k
in the conjecture cannot be strengthened to cn

2
\surd 
k
for any c < 1.

Suppose that G embeds T . If the central vertex of T is embedded in the inde-

pendent set, at least
\surd 
k+1
2 stars neighboring with that vertex have to be embedded

in one of the cliques together with the independent set. This means that we have to

embed at least 1+
\surd 
k+1
2 \cdot 

\surd 
k = k

2 +
\surd 
k
2 +1 vertices in part of G consisting of at most

k+1
2 +

\surd 
k - 1
2 = k

2 +
\surd 
k
2 vertices, which is not possible.

Suppose that the central vertex of T is embedded in one of the cliques. We can

embed at most
\surd 
k - 1
2 \cdot (

\surd 
k  - 1) = k - 2

\surd 
k+1

2 vertices of T in the other clique, since

each vertex in the independent set enables us to embed
\surd 
k  - 1 leaves in the other

clique. We cannot use at least k - 1
2  - k - 2

\surd 
k+1

2 =
\surd 
k  - 1 vertices of the host graph

for the embedding of T . Only | V (G)|  - (
\surd 
k - 1) = k+

\surd 
k - 1
2  - (

\surd 
k - 1) < k vertices

in G can be used to embed T , hence it is again not possible to embed T .

3. The regularity method. In this section we state several preparatory results
that will be used later for the proof of Theorem 1.3.

The basic idea of using the regularity lemma for embedding trees is that it is
easy to embed trees when we know that the host graph is (pseudo)random, because
then we can use its expansion properties. The regularity lemma (subsection 3.2)
enables us to partition the host graph into a bounded number of clusters such that
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the edges between them are behaving in a pseudorandom fashion. We cannot exploit
this property to easily embed the whole tree, but we may partition the tree into small
subtrees (subsection 3.3) and then it is reasonably easy, though technical, to embed
any such small subtree in basically any pair of clusters with a nontrivial amount of
edges between them (the second technical lemma in subsection 3.4).

The problem that we are left with (proof in section 4) is to embed the macroscopic
structure of the tree that we get after its partitioning in the clusters of the host graph.
This problem is quite similar to the problem that we started with; it is indeed tempting
to think about this problem as of a fractional embedding, since we may embed several
small subtrees in overlapping clusters subject to cardinality constraints. The reality
is more complicated and technical, though, so we do not pursue this intuition later in
the paper.

3.1. Notation. Throughout the paper we will use the following notation. The

edge density of a bipartite graph with color classes X,Y is the fraction e(X,Y )
| X| | Y | , where

e(X,Y ) = | E(X,Y )| and E(X,Y ) is the set of edges with one endpoint in X and the

other in Y . The average degree is defined as deg(X,Y ) = e(X,Y )
| X| . When we work

with a fixed graph G, we use V (G) and E(G) to denote the set of its vertices or edges,
respectively. For X \subseteq V (G) we then also write deg(X) instead of deg(X,G \setminus X)---
this is the average degree of a vertex of X in the subgraph of G induced by edges
between X and V (G) \setminus X. The neighborhood of a vertex v is the set of vertices
NG(v) = \{ u \in G| \{ u, v\} \in E(G)\} . The neighborhood of a set S is NG(S) = \{ u \in 
G| \exists v \in S : \{ u, v\} \in E(G)\} . If T is a tree and x, y \in T , distT (x, y) is the length of the
unique path between x and y in T , i.e., the number of edges on that path.

3.2. Regularity lemma. We say that (X,Y ) is an \varepsilon -regular pair if for every
X \prime \subseteq X and Y \prime \subseteq Y , | X \prime | \geq \varepsilon | X| , and | Y \prime | \geq \varepsilon | Y | it holds that | d(X \prime , Y \prime ) - d(X,Y )| \leq 
\varepsilon .

We say that a partition \{ v0,v1, . . . ,vm\} of V (G) is an \varepsilon -regular partition if | v0| \leq 
\varepsilon | V (G)| , and all but at most \varepsilon m2 pairs (vi,vj), 1 \leq i < j \leq m, are \varepsilon -regular. Each
set of the partition is called a cluster. We call the cluster v0 the garbage set. We call
a regular partition equitable if | vi| = | vj | for every 1 \leq i < j \leq m.

Theorem 3.1 (Szemer\'edi's regularity lemma [29]). For every \varepsilon > 0 there is n0

and M such that every graph of size at least n0 admits an \varepsilon -regular equitable partition
\{ v0, . . . ,vm\} with 1/\varepsilon \leq m \leq M .

Given an \varepsilon -regular pair (X,Y ), we call a vertex x \in X typical with respect to
a set Y \prime \subseteq Y if deg(x, Y \prime ) \geq (d(X,Y )  - \varepsilon )| Y \prime | . Note that from the definition of
regularity it follows that all but at most \varepsilon | X| vertices of X are typical with respect
to any subset of Y of size at least \varepsilon | Y | .

3.3. Partitioning trees. Here we state a crucial lemma from [22] that allows
us to partition the tree into a controllable number of small subtrees that we also in-
formally call microtrees. These trees are neighboring with a set of vertices of bounded
size consisting of vertices that we informally call seeds. Moreover, we need to work
separately with seeds from different color classes of T .

In the following definition, as well as in the example partition in Figure 3, the set
WA \cup WB is the set of seeds of T and the set \scrD A \cup \scrD B is the set of its microtrees.

Definition 3.2 (see [22, Definition 3.3]). Let T be a tree on k + 1 vertices. An
\ell -fine partition of T is a quadruple (WA,WB ,\scrD A,\scrD B), where WA,WB \subseteq V (T ) and
\scrD A and \scrD B are families of subtrees of T such that
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WA WB

DA

DB

W

D
0

D
00(former WB)

Fig. 3. An 8-fine partition of a tree and the respective one-sided 8-fine partition of the same
tree from the proof of Lemma 3.5.

1. the sets WA, WB and \{ V (K)\} K\in \scrD A\cup \scrD B
partition V (T ) (in particular, the

trees in K \in \scrD A \cup \scrD B are pairwise vertex disjoint),
2. max\{ | WA| , | WB | \} \leq 336k/\ell ,
3. for w1, w2 \in WA \cup WB their distance in T is odd if and only if one of them

lies in WA and the other one in WB,
4. | K| \leq \ell for every tree K \in \scrD A \cup \scrD B,
5. for each K \in \scrD A we have NT (V (K)) \setminus V (K) \subseteq WA, and similarly for each

K \in \scrD B we have NT (V (K)) \setminus V (K) \subseteq WB,
6. | NT (V (K)) \cap (WA \cup WB)| \leq 2 for each K \in \scrD A \cup \scrD B,
7. if NT (V (K))\cap (WA\cup WB) contains two vertices z1, z2 for some K \in \scrD A\cup \scrD B,

then distT (z1, z2) \geq 6.
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We did not list all properties of \ell -fine partition from [22], only those we need.

Lemma 3.3 (see [22, Lemma 3.5]). Let T be a tree on k + 1 vertices and let
\ell \in \BbbN , \ell < k. Then T has an \ell -fine partition.

In the subsequent applications we are always working with \ell = \beta k for some small
\beta > 0.

Since we work with trees with sublinear degree, we may further constrain the
\ell -fine partition in such a way that all of its seeds are only from one color class of T .
We call this simpler structure a one-sided \ell -fine partition.

We at first define precisely the notion of a one-sided \ell -fine partition and in the
subsequent lemma we observe that we may get the one-sided \ell -fine partition from \ell -
fine partition by adding neighbors of seeds of WB to WA and then treating the former
set WB similarly to the set \scrD A \cup \scrD B (the lower part of Figure 3).

Definition 3.4. Let T be a tree on k + 1 vertices and V1, V2 its color classes.
Let \Delta = maxv\in V2

deg(v). A one-sided \ell -fine partition of T is a pair (W,\scrD ), where
W \subseteq V (V1) and \scrD is a family of subtrees of T such that

1. the sets W and \{ V (K)\} K\in \scrD partition V (T ),
2. | W | \leq 336k(1 + \Delta )/\ell ,
3. | K| \leq \ell for every tree K \in \scrD ,
4. for each K \in \scrD we have NT (V (K)) \setminus V (K) \subseteq W ,
5. we can split \scrD into two subfamilies, \scrD = \scrD \prime \sqcup \scrD \prime \prime , in such a way that all trees

from \scrD \prime have at most two neighbors z1, z2 \in W such that distT (z1, z2) \geq 4,
while | \scrD \prime \prime | \leq 336k/\ell and every tree from \scrD \prime \prime is a single vertex with at most
\Delta neighbors in W .

Lemma 3.5. Let T be a tree on k+1 vertices and let \ell \in \BbbN , \ell < k. Then T has a
one-sided \ell -fine partition.

Proof. Let (WA,WB ,\scrD A,\scrD B) be an \ell -fine partition of T . Let V1, V2 be the
partition of the vertices of T into color classes. Suppose that WB \subseteq V2. Let
W = WA \cup NT (WB) and define \scrD as the set of trees of the forest T \setminus W . Con-
ditions 1, 2, and 4 are clearly satisfied. Each vertex from WB is now a singleton tree
in \scrD . Define \scrD \prime \prime as the family of these singleton trees and set \scrD \prime = \scrD \setminus \scrD \prime \prime . Each
tree in \scrD \prime \prime clearly satisfies conditions 3 and 5. Each tree from \scrD \prime is either a tree from
\scrD A or a subtree of a tree from \scrD B , and all such trees satisfy condition 3. Finally
recall that for each tree from \scrD A \cup \scrD B with two neighbors z1 and z2 in WA \cup WB we
have distT (z1, z2) \geq 6. Thus, all trees from \scrD A satisfy condition 5. Each tree from
\scrD B with two neighbors z1, z2 \in WB was split into one tree with two neighbors in W ,
such that their distance in T is at least 4, and maybe several other trees with only
one neighbor in W . All such trees also satisfy condition 5.

3.4. Embedding in regular pairs. In this section we present two embedding
lemmas. The first will be used to embed the seeds of a one-sided partition, together
with the set \scrD \prime \prime , in vertices of two neighboring clusters.

Proposition 3.6. For any d, \beta , \varepsilon > 0, \varepsilon \leq d2/100 there exist k0 and \gamma > 0 such
that the following holds.

Let T be a tree of order k \geq k0 and V2 one of its color classes such that \forall v \in V2 :
deg(v) \leq \gamma k. Moreover, let (W,\scrD ),\scrD = \scrD \prime \sqcup \scrD \prime \prime be its one-sided \beta k-fine partition. Let
v1 and v2 be two clusters of vertices of a graph G forming an \varepsilon -regular pair of density
at least d. Suppose that | v1| = | v2| \geq k/MT3.1(\varepsilon ), where MT3.1(\varepsilon ) is the output of the
regularity lemma (Theorem 3.1) with an input \varepsilon . Let U \subseteq v1, | U | \leq 2

\surd 
\varepsilon | v1| . Then
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Fig. 4. Embedding of W and
\bigcup 

\scrD \prime \prime in the two clusters v1 and v2 in Proposition 3.6.

there is an injective mapping \varphi of W \cup 
\bigl( \bigcup 

\scrD \prime \prime \bigr) that embeds vertices of W in v1 \setminus U
and vertices of

\bigcup 
\scrD \prime \prime in v2.

Proof. Choose \gamma , k0 > 0 such that

\gamma =
\beta d

2000MT3.1(\varepsilon )
,

k0 =
10

\gamma 
.

Note that in this case we have\bigm| \bigm| \bigm| \bigcup D\prime \prime 
\bigm| \bigm| \bigm| + | W | \leq 336k

\beta k
+

336k(1 + \gamma k)

\beta k

=
336(\gamma k + 2))

\beta 

k \geq 10/\gamma \leq 500\gamma k

\beta 

definition of \gamma =
500\beta dk

\beta \cdot 2000MT3.1(\varepsilon )
=

dk

4MT3.1(\varepsilon )

| \bfv 1| \geq k/MT3.1(\varepsilon ) \leq d

4
| v1| .

Take an arbitrary vertex r \not \in 
\bigcup 
\scrD \prime \prime of T and root the tree at r. Order all vertices

of W \cup 
\bigl( \bigcup 

\scrD \prime \prime \bigr) according to an order, in which they are visited by a depth-first
search starting at r. Let U \prime \subseteq v1 \cup v2 be the set of vertices of v1 not typical to
v2 together with vertices of v2 not typical to v1. We will provide an algorithm that
gradually defines a partial embedding \varphi of the vertices of W \cup 

\bigl( \bigcup 
\scrD \prime \prime \bigr) such that

\varphi (W ) \subseteq v1 \setminus (U \cup U \prime ) and \varphi (
\bigcup 
\scrD \prime \prime ) \subseteq v2 \setminus U \prime . The situation is displayed in Figure 4.

We iterate over the sequence x1, x2, x3, . . . of vertices from W \cup 
\bigl( \bigcup 

\scrD \prime \prime \bigr) , where
the vertices are ordered by the depth-first search. In the ith step we deal with the
vertex x = xi. First we deal with the case x \in W .

Suppose that y \in 
\bigcup 
\scrD \prime \prime is the already embedded parent of x (if y \not \in 

\bigcup 
\scrD \prime \prime , our

task is simpler, since we do not have to embed x in the neighborhood of \varphi (y)). We
want to embed x in an arbitrary neighbor of y in v1 \setminus (U \cup \varphi (W ) \cup U \prime ). To do so, it
suffices to verify that NG(y)\setminus (U \cup \varphi (W )\cup U \prime ) is nonempty. This can be done with the
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help of the fact that \varphi (y) is typical to v1 and together with our bound | W | \leq d
4 | v1| ,

| NG(y) \setminus (U \cup \varphi (W ) \cup U \prime )| \geq | v1| 
\biggl( 
(d - \varepsilon ) - 2

\surd 
\varepsilon  - d

4
 - \varepsilon 

\biggr) 
> 0.

Similarly, suppose that x \in 
\bigcup 
\scrD \prime \prime . From the definition of \scrD \prime \prime we know that its

parent y is certainly in W and \varphi (y) is typical to v2. Now we similarly verify that\bigm| \bigm| \bigm| \bigm| \bigm| NG(y) \setminus 
\biggl( 
\varphi 
\Bigl( \bigcup 

\scrD \prime \prime 
\Bigr) 
\cup U \prime 

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \geq | v2| 
\biggl( 
(d - \varepsilon ) - d

4
 - \varepsilon 

\biggr) 
> 0.

Next, we state a similar proposition that enables us to embed small trees from a
fine partition of T in the regular pairs of the host graph. The proposition is a variation
on a folklore result and is similar to, e.g., [24, Lemma 5].

Proposition 3.7. For all 0 < d, \varepsilon \leq 1 such that \varepsilon < d2/100 there exists \beta > 0
such that the following holds.

Let v1,u,v be three clusters of vertices of a graph G such that v1u and uv are
\varepsilon -regular pairs of density at least d. Let v1, v2 be two (not necessarily distinct) vertices
of v1. Suppose that | v1| = | u| = | v| \geq k/MT3.1(\varepsilon ). Let K be a tree of order at most
\beta k and let x1, x2 be any of its two (not necessarily distinct) vertices from the same
color class of K. Suppose that v1 \not = v2 if and only if x1 \not = x2. Let U be any subset
of vertices of u \cup v such that | u \setminus U | \geq 4

\surd 
\varepsilon | u| and | v \setminus U | \geq 4

\surd 
\varepsilon | v| . Suppose that

| NG(vi) \cap (u \setminus U)| \geq 3\varepsilon | u| for i = 1, 2.
Then there is an injective mapping \varphi of K in u \cup v such that \varphi (V (K)) \cap U = \emptyset .

Moreover, \varphi (x1) \in u is a neighbor of v1 and \varphi (x2) \in u is a neighbor of v2.

Proof. We show the proof for the harder case when v1 \not = v2. Choose

\beta = \varepsilon /MT3.1(\varepsilon ).

From this we get

| v1| \geq 
k

MT3.1(\varepsilon )
= \beta \cdot MT3.1(\varepsilon )

\varepsilon 
\cdot k

MT3.1(\varepsilon )
=

\beta k

\varepsilon 
.

Let U \prime be the set of at most \varepsilon | u| vertices of u that are not typical to v \setminus U (note
that | v \setminus U | \geq \varepsilon | v| ) together with at most \varepsilon | v| vertices of v that are not typical to
u \setminus U . The situation is displayed in Figure 5.

Observe that for each vertex u \in u \setminus (U \cup U \prime ) we have

| NG(u) \cap 
\bigl( 
v \setminus (U \cup U \prime )

\bigr) 
| \geq (d - \varepsilon )| v \setminus U |  - \varepsilon | v| 

| \bfv \setminus U| \geq 4
\surd 

\varepsilon | \bfv | \geq (d - \varepsilon )4
\surd 
\varepsilon | v|  - \varepsilon | v| 

d \gg 
\surd 

\varepsilon \geq 
\surd 
\varepsilon \cdot 4

\surd 
\varepsilon | v|  - \varepsilon | v| \geq 2\varepsilon | v| 

| \bfv | \geq \beta k/\varepsilon \geq \varepsilon | v| + \beta k \geq \varepsilon | v| + | K| ,

and similar holds for any u \in v \setminus (U \cup U \prime ). This means that during embedding we
may always find a neighbor of u in v \setminus (U \cup U \prime ) that was not yet used for embedding.

The same applies for both vertices v1, v2. We have

| NG(vi) \cap 
\bigl( 
u \setminus (U \cup U \prime )

\bigr) 
| \geq | NG(vi) \cap (u \setminus U)|  - \varepsilon | u| 

| NG(vi) \cap (\bfu \setminus U)| \geq 3\varepsilon | \bfu | \geq 2\varepsilon | u| 
| \bfu | \geq \beta k/\varepsilon \geq \varepsilon | u| + \beta k \geq \varepsilon | u| + | K| .
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Fig. 5. Embedding of a small tree K in two clusters u and v in Proposition 3.7. In this case
r = 5.

We start by embedding the path t1 = x1, t2, . . . , tr = x2 connecting x1 with x2

in K. We embed these vertices alternately in clusters u and v. We embed x1 in an
arbitrary vertex of NG(v1)\cap 

\bigl( 
u \setminus (U \cup U \prime )

\bigr) 
. Now for i going from 2 to \ell  - 2 we always

map ti to a neighbor of \varphi (ti - 1) not lying in U \cup U \prime . Observe that both NG(v2) \cap \bigl( 
u \setminus (U \cup U \prime )

\bigr) 
and NG(tr - 2) \cap 

\bigl( 
v \setminus (U \cup U \prime )

\bigr) 
have sizes at least \varepsilon | v1| ; thus there is

an edge connecting those two neighborhoods. Map tr - 1 and tr to the two endpoints
of the edge. The rest of the tree can then be embedded in the greedy manner.

4. Proof of Theorem 1.3. In this section we prove Theorem 1.3. We split the
proof into three parts. At first we preprocess the host graph by applying the regularity
lemma and we partition the tree by applying Lemma 3.5. In the second part we find
a suitable matching structure in the host graph. In the last part we embed the tree
in the host graph.

Preprocessing the host graph and the tree. Fix \eta , r. Suppose that \eta < 1.
Choose d, \varepsilon , \beta , n0 such that

d =
(\eta r)2

1000
,

\varepsilon =
(\eta rd)20

1015
,

\beta = min

\biggl( 
\beta P3.7(d, \varepsilon ),

\eta d

105 \cdot MT3.1(\varepsilon )

\biggr) 
,

\gamma = \gamma P3.6(d, \varepsilon , \beta ),

n0 = max

\biggl( 
n0,T3.1(\varepsilon ),

2

\eta 
k0,P3.6(d, \varepsilon , \beta )

\biggr) 
.
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Let G be a fixed graph on n \geq n0 vertices with at least \eta n vertices of degree at
least k+\eta n and with \delta (G) \geq rk+\eta n. Suppose that k \geq \eta n/2; otherwise we embed the
tree T greedily. We apply the regularity lemma (Theorem 3.1) on G with \varepsilon T3.1 = \varepsilon 
and obtain an \varepsilon -regular equitable partition v0,v1, . . . ,vm with 1/\varepsilon \leq m \leq MT3.1(\varepsilon )
clusters. Each cluster has average degree at least rk + \eta n.

Erase all edges within sets vi of the partition, between irregular pairs, and between

pairs of density less than d. We have erased at most m \cdot 
\bigl( 
n/m
2

\bigr) 
\leq n2

m \leq \varepsilon n2 edges
within the sets vi, at most \varepsilon m2 \cdot (n/m)2 = \varepsilon n2 edges in irregular pairs, and at most\bigl( 
m
2

\bigr) 
\cdot d \cdot (n/m)2 \leq d \cdot n2 edges in pairs of low density. Erase the garbage set v0 and

all of the at most \varepsilon n \cdot n incident edges. Note that we have erased at most (3\varepsilon + d)n2

edges. We abuse notation and still call the resulting graph G.
Note that the quantity

\sum 
1\leq i\leq m | vi| \cdot deg(vi) dropped down by at most (6\varepsilon +

2d)n2. Thus there are at most
\surd 
6\varepsilon + 2d \cdot m clusters such that their average degree

dropped down by more than
\surd 
6\varepsilon + 2d \cdot n. Delete all such clusters and incident edges.

We again call the resulting graph G. The average degree of each cluster of G that
was not deleted at first dropped by at most

\surd 
6\varepsilon + 2d \cdot n. Then we erased at most\surd 

6\varepsilon + 2d \cdot m clusters, so now it is at least rk + \eta n  - 2 \cdot 
\surd 
6\varepsilon + 2d \cdot n > rk + \eta n/2.

Moreover, G contains at least (\eta  - \varepsilon  - 
\surd 
6\varepsilon + 2d)n \geq \eta n/2 vertices of degree at least

k+ \eta n - 2 \cdot 
\surd 
6\varepsilon + 2d \cdot n \geq k+ \eta n/2. Hence, there exists a cluster, which without loss

of generality is v1, such that the proportion of vertices of degree at least k + \eta n/2
in that cluster is at least \eta /2 \geq \varepsilon . If we denote by L this set of high degree vertices
of v1, we have deg(v1,vi) \geq deg(L,vi)  - \varepsilon | vi| from regularity of each pair (v1,vi).
This yields that deg(v1) \geq deg(L)  - \varepsilon n \geq k + \eta n/3. Moreover, if it is the case
that deg(v1) > 2k, we erase several regular pairs with one endpoint in v1 so as to
achieve deg(v1) \leq 2k. After deletion the average degree of each cluster is still at least
k + \eta n/2 - n/m \geq k + \eta n/3.

The cluster graph G of G is a graph such that its vertex set is the clusters of
G and between any pair of vertices u,v \in G there is an edge with weight d(u,v) if
and only if uv is a regular pair with density d(u,v) > 0. Since we already deleted all
irregular pairs and pairs with low density, for any edge in the cluster graph we have
d(u,v) \geq d.

We stick to using the boldface font whenever we may think about the correspond-
ing object as a vertex or a set of vertices of G. We use N\bfG (v) to denote the set of
clusters of G that are neighbors of v in G, while NG(v) denotes the neighborhood of
a vertex v of G.

After preprocessing the host graph we turn our attention to the tree T . Let
V1, V2 be its color classes such that | V1| \leq rk and \forall v \in V2 : deg(v) \leq \gamma k. We apply
Lemma 3.5 with parameter \ell L3.5 = \beta k and obtain its one-sided \beta k-fine partition
(W,\scrD ),\scrD = \scrD \prime \sqcup \scrD \prime \prime such that | W | \leq 336(1+ \gamma k)/\beta and | 

\bigcup 
\scrD \prime \prime | \leq 336/\beta . Moreover,

for each K \in \scrD \prime we have | K| \leq \beta k and for each K \in \scrD \prime \prime we have | K| = 1. Also note
that W \subseteq V1.

Structure of the host graph. We now find a suitable structure in the cluster
graph G that will be used for the embedding of T . It suffices to look at the cluster
v1, which will serve for the embedding of the seeds of T , and its neighborhood.

Let M a maximal matching in N\bfG (v1). We will denote by M both the graph and
its underlying vertex set. Suppose that uv \in M. Note that from the condition on
maximality we get that there cannot be two vertices x \not = y \in N\bfG (v1) \setminus M such that
both xu and yv are edges of G. Thus there are two possibilities for each edge uv:
either only one of its endpoints has neighbors in N\bfG (v1) \setminus M or both of its endpoints
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M1

M2

O1

O2

v1

Fig. 6. Cluster v1 and four sets of clusters M1,M2,O1,O2 that will be used for embedding.
The regular pairs of different density are sketch in shades of gray (we omit pairs touching v1).

have just one neighbor in N\bfG (v1) \setminus M. We can get rid of the second special case as
follows. For each vertex in N\bfG (v1) \setminus M either we delete it if it is a common neighbor
of at least \eta m/40 matching pairs, or we delete all edges in at most 2 \cdot \eta m/40 regular
pairs connecting the vertex with these matching pairs. In this way we delete at most
40/\eta clusters and the degree of all remaining clusters of G drops down by at most
\eta m/20 \cdot | v1| + 40/\eta \cdot | v1| \leq (\eta /20 + 40\varepsilon /\eta ) \cdot n \leq \eta n/10. We abuse notation and still
call the resulting graph G. The degree of v1 is at least k+ \eta n/3 - \eta n/10 \geq k+ \eta n/5
and the average degree of every cluster is similarly at least rk+ \eta n/5. The matching
M is still maximal in N\bfG (v1). Moreover, we can split the vertices of M into two color
classes, M = M1 \cup M2, in such a way that only clusters from M2 have neighbors
in N\bfG (v1) \setminus M. Let O1 = N\bfG (v1) \setminus M. Note that it is an independent set. Define
O2 = N\bfG (O1) \setminus \{ \{ v1\} \cup M\} . Note that N\bfG (v1) \cap O2 = \emptyset . Set O = O1 \cup O2. All
these sets are displayed in Figure 6.

Embedding. The final step of the proof is broken into three subparts. First we
give an overview of the method that we use for the construction of the mapping \varphi .
Then we formulate several preparatory technical claims. In the last part we propose
the embedding algorithm.

Overview. We gradually construct an injective mapping \varphi from T to G. In each
step \varphi denotes the partial embedding that we already constructed. The idea behind
the embedding process is very straightforward---we will try to embed microtrees of \scrD 
inside the regular pairs in M and through the vertices of O1. We will, however, have
to overcome several technical difficulties.

One of the standard approaches of embedding trees (e.g., pursued in [24]) is to
start by embedding the seeds of T in vertices of two clusters (one for each color class)
such that the neighborhoods of these special clusters are sufficiently rich. Moreover, we
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embed the seeds in such vertices that are typical to almost all neighboring clusters.
We then split the microtrees in T into several subsets and embed each subset of
microtrees in some part of the neighborhood of the special clusters. Here we take a
different approach. We start in the same way by embedding the seeds W of T in v1---a
high degree cluster of G. We then propose an algorithm that iterates over clusters in
the neighborhood of v1, each time finding two clusters that can be used to embed a
microtree.

There are two main technical difficulties that we have to overcome. Recall that
each seed is embedded in a vertex that is typical to almost all clusters. This means
that when we choose a pair of clusters that will be used for the embedding, we have
to find a microtree that has not yet been embedded such that its adjacent seeds
are embedded in vertices typical to the first cluster from the pair. We can ensure
that there will be such a microtree, unless the number of vertices that remain to be
embedded is very small, specifically 4

\surd 
\varepsilon k. To ensure that we can embed the whole

tree T , we at first allocate a small fraction of vertices F \subseteq 
\bigcup 
(M\cup O) that we do not

use for the embedding during the main embedding procedure. When only at most
4
\surd 
\varepsilon k vertices remain to be embedded, we finally embed this small proportion of trees

in the set F .
The second technical problem is that we cannot ensure that all the microtrees

have the same skew. This complicates the main embedding procedure that would
have been simpler in the case of microtrees with uniform skew. During the embedding
procedure we behave against intuition and sometimes redefine the embedding of some
microtrees.

Preparations. Note that there are at most
\surd 
\varepsilon | v1| vertices of v1 that are not

typical to more than
\surd 
\varepsilon m clusters. Indeed, otherwise there would be more than\surd 

\varepsilon | v1| \cdot 
\surd 
\varepsilon m = \varepsilon m| v1| pairs of a cluster and a vertex not typical to it, which in turn

implies the existence of a cluster such that more than \varepsilon | v1| vertices are not typical to
it, a contradiction to the \varepsilon -regularity. For each cluster v \in M1 \cup O1 fix an arbitrary
subset F\bfv of size \lfloor \eta rd| v| /300\rfloor . Since | F\bfv | \geq \varepsilon | v| , we may apply the same reasoning
to get that there are at most

\surd 
\varepsilon | v1| vertices of v1 that are not typical to more than\surd 

\varepsilon m sets \{ F\bfv i
\} [2,m].

We invoke Proposition 3.6 with parameters dP3.6 = d, \beta P3.6 = \beta , \varepsilon P3.6 = \varepsilon . We
also choose v2,P3.6 = v2 to be any cluster from the neighborhood of v1,P3.6 = v1.
Finally, we define the set UP3.6 to be the set of the at most 2

\surd 
\varepsilon | v1| vertices not typical

to more than
\surd 
\varepsilon m neighboring clusters vi, or their subsets F\bfv \bfi 

. Note that due to our
initial choice of constants all the conditions from the statement of the proposition are
satisfied. Hence we embed the vertices of W in v1, while the vertices of

\bigcup 
\scrD \prime \prime will be

embedded in v2. Moreover, each vertex from W is embedded in a vertex typical to
all but at most

\surd 
\varepsilon m clusters vi and their fixed subsets F\bfv i of size \lfloor \eta rd| v1| /300\rfloor .

Note that each microtree K \in \scrD \prime has at most two neighbors in W (point 5 in
Definition 3.4). We call a cluster u \not = v1 nice with respect to K \in \scrD \prime if the at most
two neighbors of K in W are embedded in vertices of v1 typical to u. We will now,
yet again, employ a doublecounting argument to observe that most of the clusters are
nice to most of the trees from \scrD \prime . We claim that there are at most 2 4

\surd 
\varepsilon m clusters

such that if we take all trees such that the cluster is not nice to them, then the union
of all such trees contains more than 4

\surd 
\varepsilon k vertices.

Suppose that it is not true. Note that each vertex from W was mapped to a
vertex that is typical to all but at most

\surd 
\varepsilon m clusters; thus for each tree K there

are at most 2
\surd 
\varepsilon m clusters that are not nice to K. Consider all pairs consisting of
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a microtree from \scrD \prime and a cluster that is not nice to the tree. Moreover, each such
connection shall be weighted by the size of the tree. Consider the sum of all weights
of all such pairs. Each tree K contributes to the overall sum by at most | K| \cdot 2

\surd 
\varepsilon m;

thus the overall sum is at most k \cdot 2
\surd 
\varepsilon m. On the other hand, if our claim were not

true, the overall sum would be bigger than 2 4
\surd 
\varepsilon m \cdot 4

\surd 
\varepsilon k = k \cdot 2

\surd 
\varepsilon m.

Delete all clusters such that the union of all trees not nice to them has more than
4
\surd 
\varepsilon k vertices. If they are from M, delete also their neighbors in M. For simplicity

also delete the cluster v2, because then we will not need to consider \scrD \prime \prime in further
calculations.

Observe that the average degree of each cluster is still at least

rk + \eta n/10 - 4 4
\surd 
\varepsilon m| v\bfone |  - | v\bftwo | 

m \geq 1/\varepsilon \geq rk + \eta n/10 - 4 4
\surd 
\varepsilon n - \varepsilon n

\varepsilon \ll \eta \geq rk + \eta n/20.

Similarly, the degree of v1 is still at least deg(v1) \geq k + \eta n/20. We still call the new
graph G. For each u \in N\bfG (v1) it now holds that the number of vertices in microtrees
such that u is not nice to them is at most 4

\surd 
\varepsilon k.

Our main embedding algorithm will work until fewer than 4
\surd 
\varepsilon k vertices of T

remain to be embedded. To embed the rest of the vertices of T , we now define a set
F that intersects each cluster in M \cup O in a small fraction of vertices.

Claim 4.1. There is a set F \subseteq 
\bigcup 
(M \cup O) satisfying | F | \leq \eta rdeg(v1)/100, F\bfu \subseteq 

F \cap u for any u \in M1 \cup O1 and | F \cap u| = | F \cap v| for any uv \in M. Moreover, if we
extend our partial mapping \varphi of W \cup 

\bigcup 
\scrD \prime \prime in such a way that the extended mapping

satisfies \varphi (T ) \cap F = \emptyset and \varphi is defined on the whole T except of some \=\scrD \subseteq \scrD with
| 
\bigcup \=\scrD | \leq 4

\surd 
\varepsilon k, then we can injectively extend \varphi to the whole tree T .

Proof. In the first part of the proof we propose a suitable procedure defining
F . Then we show that during the defining procedure the size of F is bounded by
\eta rdeg(v1)/100 as desired in the statement of the claim. Finally we use this fact to
argue that the defining procedure finishes only after defining the whole F . In the
second part of the proof we use Proposition 3.7 to embed a small set of trees \=\scrD in F .

We define F as follows. For each u \in M1\cup O1 we add F\bfu to F . Then for each set
F\bfu we find a set of the same size in some neighbor v \not = v1 of u and also add this set
to F . We call this set G\bfu and find it as follows. For uv \in M we take G\bfu = F\bfv . For
u \in O1 we find its neighboring cluster in O2 \cup M2 with at least \lfloor \eta rd| u| /300\rfloor vertices
that were not yet added to F and we set G\bfu to be this set (we argue later why we
always find a suitable neighboring cluster, i.e., why this defining procedure cannot
finish sooner than required). In the case when F\bfu \subseteq u \in O1, but G\bfu \subseteq v\prime \in M2,
it is no longer true that | F \cap u\prime | = | F \cap v\prime | for some matching edge u\prime v\prime \in M. We
reestablish the condition by adding \lfloor \eta rd| u\prime | /300\rfloor vertices from u\prime to F .

During the defining procedure and after it finishes we have

| F | \leq 3 \cdot 
\sum 

\bfu \in \bfM 1\cup \bfO 1

\lfloor \eta rd| u| /300\rfloor \leq \eta rdeg(v1)/100.

Now we argue that each cluster u \in O1 has a neighbor in M2 \cup O2 with at least
\lfloor \eta rd| u| /300\rfloor vertices that are not yet in F . Since we know that

deg
\Bigl( 
u,
\bigcup 

(M2 \cup O2)
\Bigr) 
\geq rk

| F | /r \ll deg(\bfv 1) \leq 2k > 2| F | > 2deg(u, F ),
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there is certainly a cluster v \in M2 \cup O2 such that deg(u,v)/2 > deg(u, F \cap v), hence
deg(u,v \setminus F ) = deg(u,v) - deg(u,v\cap F ) > deg(u,v)/2 \geq d| v| /2, meaning that there
is a subset of at least d| v| /2 > \lfloor \eta rd| v| /300\rfloor vertices in v that can be used to define
G\bfu .

It remains to show how to embed any family of trees \=\scrD of small size in F . We
define the embedding \varphi of all trees K \in \=\scrD in a step-by-step manner. Suppose that
u \in M1\cup O1 and G\bfu \subseteq v. If the at most two neighbors z1, z2 of K in W are embedded
to two vertices of v1 that are typical to set F\bfu and, moreover, | \varphi (T ) \cap F\bfu | \leq d

2 | F\bfu | 
and | \varphi (T ) \cap G\bfu | \leq d

2 | G\bfu | , we can compute that for i = 1, 2 we have

| F\bfu \setminus \varphi (T )| \geq 
\biggl( 
1 - d

2

\biggr) 
| F\bfu | \geq 

1

2
\lfloor \eta rd| u| /300\rfloor 

\varepsilon \ll (\eta rd)2 \geq 4
\surd 
\varepsilon | u| 

and similarly | G\bfu \setminus \varphi (T )| \geq 4
\surd 
\varepsilon | v| . We also have

| NG(vi) \cap (F\bfu \setminus \varphi (T ))| \geq | NG(vi) \cap F\bfu |  - | \varphi (T ) \cap F\bfu | 
vi is typical to F\bfu \geq (d - \varepsilon )| F\bfu |  - | \varphi (T ) \cap F\bfu | 

\varepsilon \ll d, | \varphi (T ) \cap F\bfu | \leq d| F\bfu | /2 \geq d

3
| F\bfu | \geq 

d

3
\lfloor \eta rd| u| /300\rfloor 

\varepsilon \ll (\eta rd)2 \geq 3\varepsilon | u| .

Hence in this case we can use Proposition 3.7 with parameters UP3.7 = (V (G) \setminus 
F ) \cup \varphi (T ), dP3.7 = d, \varepsilon P3.7 = \varepsilon , \beta P3.7 = \beta , v1,P3.7 = v1, uP3.7 = u, vP3.7 = v,
KP3.7 = K, v1,P3.7 = \varphi (z1), v2,P3.7 = \varphi (z2). The proposition then allows us to
embed K.

Now it suffices to show that for any K we always find a suitable u such that
\varphi (z1), \varphi (z2) are typical to F\bfu and both F\bfu and G\bfu do not contain many embedded
vertices of T . Recall that vertices \varphi (z1), \varphi (z2) are typical to all but at most

\surd 
\varepsilon m sets

F\bfu . If we cannot use for the embedding any other set F\bfu from remaining clusters of
M1 \cup O1, it means that we have embedded more than d

2 \cdot \lfloor \eta rd| v1| /300\rfloor vertices to
any such set F\bfu , or we have embedded at least the same number of vertices in the
appropriate set G\bfu . This means that the number of vertices we have embedded is at
least\bigl( 

| M1 \cup O1|  - 2
\surd 
\varepsilon m
\bigr) 
\cdot 
\biggl( 
d

2
\cdot \lfloor \eta rd| v1| /300\rfloor 

\biggr) 
\geq 
\biggl( 
| M \cup O1| 

2
 - 2

\surd 
\varepsilon m

\biggr) 
\cdot d

2r\eta 

700
| v1| 

deg(\bfv 1) \leq | \bfM \cup \bfO 1| \cdot | \bfv 1| \geq 
\biggl( 
deg(v1)

2
 - 2

\surd 
\varepsilon m| v1| 

\biggr) 
\cdot d

2r\eta 

700

\varepsilon \ll d10r5\eta 5 \geq 
\biggl( 
deg(v1)

2
 - 2

\surd 
\varepsilon m| v1| 

\biggr) 
\cdot 5
\surd 
\varepsilon 

m| \bfv 1| \leq n \geq 
\biggl( 
k

2
 - 2

\surd 
\varepsilon n

\biggr) 
\cdot 5
\surd 
\varepsilon 

k \geq \eta n/2 \geq 

\Biggl( 
1

2
 - 4

\surd 
\varepsilon 

\eta 

\Biggr) 
5
\surd 
\varepsilon k

> 4
\surd 
\varepsilon k,

a contradiction.
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Embedding algorithm. So far we have embedded the set W in vertices of v1

that are typical to almost all clusters in the neighborhood of v1. We also embedded
the small set \scrD \prime \prime in v2. We denote this partial embedding by \varphi 0 and we use the
symbol \varphi to denote the successive extensions of \varphi 0 that we will construct.

We invoke Claim 4.1 to get a small set F . Now we will gradually embed microtrees
from \scrD in

\bigcup 
(M \cup O) \setminus F , until the number of vertices of microtrees that were not

embedded yet is at most 4
\surd 
\varepsilon k. Then we embed the remaining parts of T in F using

Claim 4.1.
We will use the following notation for the sake of brevity.

Definition 4.2. Let \varphi be a fixed partial embedding of T in G extending \varphi 0. We
say that a cluster u is full if\bigm| \bigm| u \cap 

\bigl( 
\varphi (V (T )) \cup F

\bigr) \bigm| \bigm| \geq | u|  - 4
\surd 
\varepsilon | u| .

We say that a cluster u \in N\bfG (v1) is saturated, if\bigm| \bigm| u \cap 
\bigl( 
\varphi (V (T )) \cup F

\bigr) \bigm| \bigm| \geq deg(v1,u) - 4
\surd 
\varepsilon | u| .

We say that a matching edge uv \in M is saturated if\bigm| \bigm| (u \cup v) \cap 
\bigl( 
\varphi (V (T )) \cup F

\bigr) \bigm| \bigm| \geq deg(v1, (u \cup v)) - 8
\surd 
\varepsilon | u|  - \beta k.

Note that every full cluster is also saturated. The intuition behind these defi-
nitions will be clear from the statements of the following claims. Recall that V1, V2

denote the two color classes of T and that W \subseteq V1.

Claim 4.3. Let \varphi be a partial embedding of T in G extending \varphi 0. If u \in N\bfG (v1)
is not saturated and v \in N\bfG (u) \setminus \{ v1\} is not full, then, unless \varphi satisfies | dom(\varphi )| \geq 
k  - 4

\surd 
\varepsilon k, we may extend \varphi injectively to some K \in \scrD \prime that was not yet embedded in

such a way that \varphi (V (K) \cap V2) \subseteq u, \varphi (V (K) \cap V1) \subseteq v, and \varphi (V (K)) \cap F = \emptyset .

Proof. We have ensured that the union of all trees of \scrD such that u is not nice
to them has at most 4

\surd 
\varepsilon k vertices. Hence there is a yet nonembedded tree K \in \scrD 

such that its at most two neighbors t1, t2 in W are embedded in vertices of v1 that
are typical to u. Note that this implies that\bigm| \bigm| \bigm| \bigm| NG(ti) \cap 

\Bigl( 
u \setminus 

\bigl( 
\varphi (V (T )) \cup F

\bigr) \Bigr) \bigm| \bigm| \bigm| \bigm| \geq deg(v1,u) - \varepsilon | u|  - | u \cap 
\bigl( 
\varphi (V (T )) \cup F

\bigr) 
| 

\bfu is not saturated \geq deg(v1,u) - \varepsilon | u|  - 
\bigl( 
deg(v1,u) - 4

\surd 
\varepsilon | u| 

\bigr) 
\geq 3\varepsilon | u| .

Recall that neither u nor v is full. Together with the inequality above this enables
us to apply Proposition 3.7 with dP3.7 := d, \varepsilon P3.7 = \varepsilon , \beta P3.7 = \beta ,v1,P3.7 = v1,uP3.7 =
u,vP3.7 = v,KP3.7 = K, vi,P3.7 = \varphi (ti), xi,P3.7 = NT (ti) \cap K,UP3.7 = \varphi (V (T )) \cup F .
The proposition then allows us to extend injectively \varphi to K.

Claim 4.4. Let \varphi be a partial embedding of T in G extending \varphi 0.
1. There exists either an unsaturated cluster of O1 or an unsaturated edge of

M.
2. Suppose that \varphi (V2) \cap 

\bigcup 
M\bftwo = \emptyset and let u \in O1. There exists a cluster in

N\bfG (u) \setminus \{ v1\} that is not full.
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Proof.
1. Suppose that each edge of M is saturated. For every uv \in M we then have

\bigm| \bigm| (u \cup v) \cap 
\bigl( 
\varphi (V (T )) \cup F

\bigr) \bigm| \bigm| 
\bfu \bfv is saturated \geq deg(v1,u \cup v) - 8

\surd 
\varepsilon | u|  - \beta k

deg(\bfv 1,\bfu \cup \bfv ) \geq 2d| \bfv 1| \geq deg(v1,u \cup v)

\Biggl( 
1 - 8

\surd 
\varepsilon | v1| + \beta k

2d| v1| 

\Biggr) 

| \bfv 1| \geq n/MT3.1(\varepsilon ), k \leq n \geq deg(v1,u \cup v)

\Biggl( 
1 - 4

\surd 
\varepsilon 

d
 - \beta n

2dn/MT3.1(\varepsilon )

\Biggr) 
\varepsilon \ll (\eta d)2, \beta \ll d\eta /MT3.1(\varepsilon ) \geq deg(v1,u \cup v)(1 - \eta /100).

Suppose that each cluster of O1 is saturated. After a similar calculation, we
get that for each u \in O1 we have

| u \cap (\varphi (V (T )) \cup F )| \geq deg(v1,u)(1 - \eta /100).

Hence we have

\bigm| \bigm| \bigm| \bigcup (M \cup O1) \cap (\varphi (V (T )) \cup F ))
\bigm| \bigm| \bigm| \geq deg(v1)(1 - \eta /100)

= \eta deg(v1)/100 + deg(v1)(1 - \eta /50)

deg(\bfv 1) \geq k + \eta k/20 \geq \eta deg(v1)/100 + (k + \eta k/20)(1 - \eta /50)

| F | \leq \eta deg(\bfv 1)/100 > | F | + k \geq | \varphi (V (T )) \cup F | ,

a contradiction.
2. Suppose that all clusters in N\bfG (u) \setminus \{ v1\} are full. For each full cluster v we

have

| v \cap (\varphi (V (T )) \cup F )| \geq | v| (1 - 4
\surd 
\varepsilon )

\varepsilon \ll \eta 2 \geq | v| (1 - \eta /200)

\geq deg(u,v)(1 - \eta /200).

Since this holds for any v \in N\bfG (u) \setminus \{ v1\} , we get that

\bigm| \bigm| \bigm| \bigcup (M2 \cup O2) \cap (\varphi (V (T )) \cup F ))
\bigm| \bigm| \bigm| \geq deg

\Bigl( 
u,
\bigcup 

(M2 \cup O2) \setminus v1

\Bigr) \bigl( 
1 - \eta /200

\bigr) 
\geq 
\biggl( 
deg

\Bigl( 
u,
\bigcup 

(M2 \cup O2)
\Bigr) 
 - | v1| 

\biggr) \bigl( 
1 - \eta /200

\bigr) 
N\bfG (\bfu ) \subseteq \{ \bfv 1\} \cup \bfM 2 \cup \bfO 2 \geq deg (u)

\bigl( 
1 - \eta /200

\bigr) 
 - | v1| 

\eta 
200

deg(u) \geq \eta rk
200

\geq \eta 2rn
200

\gg \varepsilon n \geq | \bfv 1| \geq deg(u)(1 - \eta /100).
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Hence, we have\bigm| \bigm| \bigm| \bigcup (M2 \cup O2) \cap (\varphi (V1) \cup F ))
\bigm| \bigm| \bigm| 

\varphi (V2) \cap 
\bigl( \bigcup 

(\bfM 2 \cup \bfO 2)
\bigr) 
= \emptyset =

\bigm| \bigm| \bigcup (M2 \cup O2) \cap (\varphi (V (T )) \cup F ))
\bigm| \bigm| 

inequality above \geq deg(u)(1 - \eta /100)

\geq \eta deg(u)/50 + deg(u)(1 - \eta /30)

deg(\bfv 1) \leq 2k, deg(\bfu ) \geq rk + \eta k/20 \geq \eta rdeg(v1)/100 + (rk + \eta k/20)(1 - \eta /30)

> | F | + rk

\geq | F | + | V1| \geq | (\varphi (V1) \cup F ))| ,

a contradiction.

We can now finish the proof of Theorem 1.3.

Proof. We will gradually embed microtrees from \scrD \prime in
\bigcup 
(M \cup O) in a specified

manner using Claim 4.3 (hence avoiding the set F ) until | dom(\varphi )| \geq k  - 4
\surd 
\varepsilon k or all

edges of M and all vertices of O are saturated---from Claim 4.4.1 we know that the
latter actually cannot be true. When | dom(\varphi )| \geq k  - 4

\surd 
\varepsilon k, we finish by applying

Claim 4.1 on our set F . We split the embedding procedure into three phases:
1. Phase 1---saturating the matching edges of M. In the first phase we embed

gradually the microtrees of \scrD \prime in the edges of M in such a way that for
each K \in \scrD \prime we have \varphi (K \cap V2) \subseteq M1. We run the process of applying
Claim 4.3 for each edge uv until either u \in M1 is saturated, v \in M\bftwo is full,
or | dom(\varphi )| \geq k  - 4

\surd 
\varepsilon k.

2. Phase 2---saturating the clusters in O. We repeatedly pick an unsaturated
cluster v \in O1 and then embed trees from \scrD \prime in it by repeatedly applying
Claim 4.3 in such a way that for each embedded K we have \varphi (K \cap V2) \subseteq O1

and \varphi (K \cap V1) \subseteq M2\cup O2. Note that due to Claim 4.4.2 the cluster v always
has a neighbor that is not full and therefore can be used for the embedding.
Hence we can apply this procedure until all clusters from O1 are saturated,
or | dom(\varphi )| \geq k  - 4

\surd 
\varepsilon k.

3. Phase 3---finalizing the matching M. All clusters in O1 are now saturated.
Our task is now to show how to saturate the remaining edges of M. This may
not be possible with the current \varphi as it is defined right now, since it could
have happened, for example, that after the first phase we completely filled
one cluster from a matching pair, while the other cluster remained almost
empty. We solve this problem by potentially redefining the embedding of
several microtrees that were embedded in M1 \cup M\bftwo in Phase 1.
Note that for each edge uv \in M, u \in M1, it is true that either u is saturated
or v is full at the end of Phase 1. We deal with the first case in part (a).
In the latter case we did not embed anything in v in Phase 2. We undefine
embedding of all trees that were embedded in uv and saturate this edge in
part (c).
(a) If u is saturated, we repeatedly embed trees in uv in such a way that

for each K \in \scrD \prime we have \varphi (K \cap V2) \subseteq v. We do this until either u is
full or v is saturated. In the latter case the whole edge is saturated. We
deal with the first case in (b).

(b) Suppose that u is full, but v is not saturated. Note that Claim 4.1
ensures that | F \cap u| = | F \cap v| . Hence it must be the case that | \varphi (V (T ))\cap 
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u| \geq | \varphi (V (T )) \cap v| . Moreover, in Phase 2 we did not embed trees in u.
This means that there exists a tree K \in \scrD \prime that was embedded in the
matching edge uv in such a way that

\bigm| \bigm| \varphi (V (K)) \cap u
\bigm| \bigm| \geq \bigm| \bigm| \varphi (V (K)) \cap v

\bigm| \bigm| .
As long as it is true that | \varphi (V (T )) \cap u| \geq | \varphi (V (T )) \cap v| , we find any
tree K with this property and we undefine its embedding. When this
procedure ends, we have | | \varphi (V (T ))\cap u|  - | \varphi (V (T ))\cap v| | \leq \beta k. We later
refer to this inequality as the balancing condition.

(c) Finally, it suffices to show how to saturate an edge uv fulfilling the
balancing condition (note that if \varphi (V (T )) \cap uv = \emptyset , then the matching
edge certainly fulfills the condition). We again embed the microtrees in
uv one after another. Unless one of the clusters is saturated, we choose
to embed K \in \scrD \prime in such a way that the color class of K with fewer
vertices is embedded in the cluster such that more of its vertices were
already used for the embedding of T . In this way we ensure that the
balancing condition still holds.
After one cluster, say, u, becomes saturated, we continue by embedding
only in such a way that for each K \in \scrD \prime we have \varphi (K \cap V2) \subseteq v. We do
this until either v becomes saturated or u is full. In the first case the
whole edge uv is clearly saturated. In the other case note that we have

| (\varphi (V (T )) \cup F ) \cap u| 
\bfu is full \geq | u|  - 4

\surd 
\varepsilon | u| 

| \bfu | = | \bfv | \geq deg(\bfv 1, \bfv ) \geq deg(v1,v) - 4
\surd 
\varepsilon | v| 

and hence

| (\varphi (V (T )) \cup F ) \cap v| 
the balancing condition \geq | (\varphi (V (T )) \cup F ) \cap u|  - \beta k

\bfu is full, hence saturated \geq deg(v1,u) - 4
\surd 
\varepsilon | u|  - \beta k.

Hence, the whole matching edge is saturated.
We described an algorithm that terminates when | dom(\varphi )| \geq k  - 4

\surd 
\varepsilon k, or all

edges of M and all vertices of O are saturated. But the latter cannot happen due to
Claim 4.4.1. We finish by invoking Claim 4.1.
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